Anno Accademico 2018/2019
Obiettivi formativi
Obiettivo del corso è presentare gli argomenti di base della Matematica particolarmente rilevanti per gli studi economici. Vengono introdotti gli elementi essenziali per il calcolo elementare e l’algebra lineare, con particolare riferimento allo studio di funzioni reali di una variabile reale, derivate, integrali, matrici e sistemi lineari.
Al termine del corso lo studente è in grado di:
- calcolare i limiti delle funzioni più importanti;
- utilizzare gli elementi fondamentali del calcolo differenziale, integrale e dell’algebra lineare, applicandoli alla risoluzione di semplici problemi teorico-pratici ed alla formulazione ed interpretazione dei modelli matematici dell'economia, dell'azienda e della finanza.
- L. Peccati, S. Salsa, A. Squellati: Matematica per l'economia e l'azienda, Egea, Milano, 2004, Terza edizione.
- S. Waner, S.R. Costenoble: Strumenti quantitativi per la gestione aziendale, Apogeo, 2006.
Prerequisiti
Sono richieste le conoscenze di base dell’algebra elementare con particolare riferimento a disequazioni di primo e secondo grado, disequazioni con radici, logaritmi ed esponenziali.
Contenuto del corso
Parte Prima (18 ore)
Teoria delle funzioni reali di una variabile reale:
Concetto di funzione e di grafico. Funzioni iniettive e biunivoche, inverse, monotone. Funzioni elementari: potenze, radici, logaritmi; esponenziali. Successioni. Concetto di limite, operazioni sui limiti. Limite della funzione composta. Forme indeterminate. Limiti notevoli. Funzioni continue. Teorema di Weierstrass, dei valori intermedi e di esistenza degli zeri.
Parte Seconda (18 ore)
Teoria del calcolo differenziale:
Definizione di rapporto incrementale e concetto di derivata. Continuità delle funzioni derivabili. Derivazione delle somme, dei prodotti, dei quozienti, di funzioni composte. Massimi e minimi locali e assoluti. Teorema di Fermat, Teorema di Lagrange, test di monotonia. Derivate di ordine superiore al primo. Funzioni concave e convesse, punti di flesso, test al secondo ordine. Asintoti. Studio di funzione. Teorema de L'Hospital.
Parte Terza (10 ore)
Cenni di teoria dell’integrazione:
Nozione di primitiva, di integrale indefinito. Integrale di Riemann. Interpretazione geometrica (area) dell'integrale. Linearità dell'integrale. Integrali immediati. Teorema fondamentale del calcolo integrale. Integrazione di semplici funzioni.
Parte Quarta (10 ore)
Algebra Lineare:
Generalità su vettori e matrici. Determinante di una matrice. Sistemi lineari. Teoremi di Cramer e di Rouchè-Capelli.
Metodi didattici
Lezioni frontali ed esercitazioni.
Modalità di verifica dell'apprendimento
Esame scritto.
L’obiettivo della prova d’esame è verificare il livello di raggiungimento degli obiettivi formativi precedentemente indicati. La prova scritta consiste di due quesiti riguardanti gli argomenti teorici, le applicazioni e gli esercizi trattati nel corso.
Il voto finale è dato dalla somma dei punteggi delle singole parti. Per superare l’esame è necessario acquisire il punteggio minimo di 18.
Testi di riferimento
Materiale aggiuntivo è disponibile nella pagina dell'insegnamento: http://www.unife.it/economia/economia/insegnamenti/metodi-matematici-per-leconomia