Reactor anti-neutrinos in the world B. Ricci, University and INFN, Ferrara

Neutrino Geoscience, LNGS 6-8 october 2010

Outline:

- why reactor anti-neutrinos ?
- reactors in the world
- signal calculation
- ingredients
- reactor signal for different sites
- annual variation of reactor signal
- conclusion

Work done with : Mantovani, Fiorentini, Chubakov (Univ. and INFN- Ferrara), Esposito (INFN-LNL), Vitali (Univ. Ferrara), Ludhova and Zavatarelli (Borexino coll), Lissia (INFN-Cagliari) 1

Reactor anti neutrinos and geo-neutrinos

• The **HER** has to be controlled by studying the different contributions from the nuclear reactors, if one wants to compare Ev_{geo-v} and Ev_{react} in the **LER**.

• The 2006* map is based on 2000 IAEA database and considering all reactors at full power. The ratio r is referred to the geo-neutrino energy window.

Evreac			
Ev _{geo v}			r
	>3.0	Kamioka	6.7
	2.5	Sudbury	1.1
	2.0	Gran Sasso	0.9
	4.5	Pyhäsalmi	0.5
35	1.5	Baksan	0.2
	1.0	Homestake	0.2
	0.5	Hawaii	0.1
		Curacao	0.1
			11

from Mantovani, Yokohama 2010

Data Source: IAEA files

International Atomic Energy Agency http://www.iaea.org/programmes/a2/

On June, description and history of each core are published, reffering to previous year.

 Data on: thermal power, electrical capacity, electrical Load Factor, fuel enrichment...

Nuclear power plants in the world

Total: 440

Mean thermal power for core: 2.6 GWth

at 31 Dec. 2009

1148

Reactors by type

Core type

PWR	Pressurized (light) Water Reactor	GCR	Gas Cooled Reactor
BWR	Boiling Water Reactor	LWGR	Light Water Graphite mod.
PHWR	Pressurized Heavy Water Reactor	FBR	Fast Breeder Reactor

Signal calculation

K=235U, 238U, 239Pu, 241Pu

Effective Thermal Power

- From IAEA we have thermal capacity P_{th} and Load Factor (LF=electrical energy as measured at unit outlet terminals divided by net electrical energy which would have been supplied to the grid if the unit were operated continuously)
- From EDF we have the (measured) thermal power of French cores in 2008 [thank to D. Vignaud of Borexino coll. and E. Vrignaud from EDF]
- For each core we calculated:

$$LF_{th} = \frac{P_{thermal}^{EDF}}{P_{thermal}^{IAEA}} \qquad \rho = \frac{LF_{th}}{LF_{IAEA}}$$

averaging on the cores:

$$< LF_{th} >_{cores} = 0.8 \pm 0.1$$
 $< \rho >_{cores} = 1.0$

- In addition, P_{thermal} is measured with an accuracy of 2% (Djurcic et al. 2009)
- Conclusion: we assign an uncertainty of 2.4% at the "effective" thermal power (i.e. Pth * LF)

 13 ± 0.017

Power fractions (see Lasserre talk)

- *p_k*=fraction of power which is produced by the *k*-th isotope: K=235U, 238U, 239Pu, 241Pu
- Depend on type of reactors and on time

	235U	239Pu	241Pu	238U
KamLand (average)	0.56	0.295	0.059	0.078
Chooz start*	0.66	0.24	0.02	0.08
Chooz stop	0.54	0.32	0.06	0.08
Russia**	0.556	0.326	0.047	0.071
Slovakia**	0.62	0.24	0.06	0.08
Mox Start* *	0	0.794	0.126	0.08
Mox Stop	0	0.636	0.284	0.08
Mox Medium	0	0.708	0.212	0.08

 We take : -Kamland average value (PWR+BWR reactors)
 -same power fractions for all cores in the world (+for 35 european cores, producing some 30% of the respective power with MOX fuel)

By varying composition in the range of values available, the total signal changes of about 2%
*from G. Mention 2007 (thanks to Alimonti)

*from G. Mention 2007 (thanks to Alimonti) ** from Private Comunication (thanks to Ludhova and Derbin)

Energy released for fission

- For the four isotopes relevant in nuclear reactors (Apollonio et al 2003)
- The uncertainty on Q_k correspond to a variation of the calculate signal of about ± 0.3%

	# v _e > 1.8 MeV	Q_k (MeV)
²³⁵ U	1.92	201.7 ± 0.6
²³⁸ U	2.38	205.0 ± 0.9
²³⁹ Pu	1.45	210.0 ± 0.9
²⁴¹ Pu ,	1.83	212.4 ± 1.0

 Note: about 2 neutrinos, for each fission, have energy above the detection threshold.

Anti-nu spectrum (see Lasserre talk)

 235U, 239Pu, 241Pu from polynomial fit of exp.tal data (Huber & Schwetz 2004)

- 238U from
 calculation of Vogel
 and Hendel 1989
- Uncertainty in the spectrum is quoted to be about 2.5% (schrekenbach et al 1985, Hahn et al 1989, Vogel et al 1981...)

pol. coeff	235U	239Pu	241Pu	238U	
a0	3.519	2.560	1.487	0.976	
a1	-3.517	-2.654	-1.038	-0.162	
a2	1.595	1.256	0.413	-0.079	
a3	-0.417	-0.362	-0.142	0.000	
a4	0.050	0.045	0.019	0.000	
a5	-0.002	-0.002	-0.001	0.000	

SNO detecto

*Schwetz, Tortola and Valle 2010

Reactor anti-nu Predictions						reactor	reactor only	
					~ 30 %	~ 70 %		
-15-16-2	RLER	RHER	R TOTAL		а	<i>3.3</i> b	E _v	
					Reactor Geo-ner	s Itrinos	(MeV)	
KAMIOKA	152±6.5	65.3 ± 3.2	527±26					
FREJUS	133±6.9	374.4 ± 19.2	567±26		2009	2009 IAEA da		
SUDBURY	44.3±2.2	139.5 ± 6.9	184±9.0		no sp	no spent fuel		
GRAN SASSO	23.1±1.1	26.2 ± 1.3	88.7±4.3		Vacuum osci		llation	
PYHASALMI	18.1±0.8	21.5 ± 1.1	71.7±3.5					
BAKSAN	9.33±0.44	53.6 ± 2.6	35.5±1.7					
DUSEL	8.40±0.38	7.5 ± 0.4	32.1±1.6					
HAWAII	1.06±0.05	3.0 ± 0.1	4.04±0.19					
CURACAO	2.65±0.12	23.7 ± 1.2	10.2±0.5					

 Estimated uncertainties in predicted signals are of the order of 4-5%, due to mixing angle, antiv spectrum, power fraction and effective thermal power

1TNU = 1 event /10^32 protons / yr

I FD | HFD

Comparison with geo-neutrino signal

	R LER	Geo v (G)*	ΔG	r=
	[TNU]	[TNU]		R _{LER} /G
КАМІОКА	152 (1±5%)	34.5	14	4.4
FREJUS	133 "	43.1	13	3.2
SUDBURY	44.3 "	50.8	9.7	0.87
GRAN SASSO	23.1 "	40.7	8.0	0.57
PYHASALMI	18.1 "	51.5	8.3	0.35
BAKSAN	9.33 "	50.8	7.7	0.18
DUSEL	8.40 "	52.6	7.8	0.16
HAWAII	1.06 "	12.5	3.7	0.085
CURACAO	2.65 "	32.5	5.9	0.082

• ΔG represents the limiting statistical error on the geo-neutrino signal which might be achieved with a detector with an effective exposure of 10^32 proton yr

$$\Delta G = \sqrt{G + R_{LER}}$$

*Fiorentini et al Phys. Rep. 2007

GRAN SASSO vs KAMIOKA

For Gran Sasso, the nearest core contributes with 3% to the total signal
 Kamioka is mainly sensitive to the nearest cores (less than 200 Km)...as well known...

Consequences of 2007 Japan earthquake

- March 2007: earthquake hit Shika (2 cores)
- July 2007:earthquake hit Kashiwazaki (7 cores)

Sendal NRP- 2"reac

Distance [km]

Signal [TNU]

Hamaoka-cho NPP - 4*reac

from Mantovani, Yokohama 2010

Time variation

• we know from IAEA data the (electrical) Load Factor month by month \Rightarrow we can study the time modulation of the predicted signals.

- At Kamioka site, for a detector of 10^32 protons, we expect a mean value of 40 events in 1 month
- The monthly averaged valued of the total thermal power in the world is 910 GW

Gennaic

Kamland data on expected reactor events (Neutrino 2010)

New reactors in Finland ?

- Olkiluoto 3: ~4300 MWth, start 2013(?)
- Olkiluoto 4: ~4300 MWth approved July 2010
- With both, signal at Phyasalmi increases of 10%
-but not only new cores...

Göteborc

Jönköping

Kristiansand

Spent fuel

- Contribution of the anti-v emitted from the stored irradiated fuel
- KamLand coll. quotes +2.4 %
- In Chooz is at most +1.5%
- Note: spent fuel contributes mainly at low energy region
- Problems: location of spent fuel and total amount

 $\begin{array}{l} \mbox{Fig. 1. Time-averaged ratio of spent fuel \widehat{v}_{\bullet} spectrum S_{SNF} to the reactor \widehat{v}_{\bullet} spectrum S_{R} above the inverse beta-decay reaction threshold (1.8 MeV) $$Kopeikin et al 2004 $} \end{array}$

Conclusion

- We update reactor signal for different sites, interesting for geo-neutrino studies.
- We are able to following the time variation of the predicted signal along a period of 3 years (2007 – 2009)
- Open question:
 - matter effect in neutrino oscillation ($\leq 1\%...$)
 - contribution of the spent fuel
 - power fraction change with time and with type core (CANDU for SNO)

The "true" conclusion

- let's go to unique sites:
- far from reactors

OAHU

 where interesting (scientific) discoveries can occur...

Hawaii

23

thank you for your attention !