Reactor antineutrinos: update

B. Ricci for the ANTINU WG, with help of F.Mantovani and S. Chubakov BOREXINO general meeting 1-3 Dec. 2011, Milano

Outline

why reactor anti-neutrinos ?
reactors in the world
signal calculation
updates
conclusion

Why reactor antineutrinos?

 Reactor antineutrinos are the main source of background in geo neutrinos detection

The map below* is based on 2000 IAEA database and considering all reactors at full power. The ratio r is referred to the geo-neutrino energy window.

reac	Г	
geo v		r
>3.0	Kamioka	6.7
2.5	Sudbury	1.1
2.0	Gran Sasso	0.9
4.5	Pyhäsalmi	0.5
1.5	Baksan	0.2
1.0	Homestake	0.2
0.5	Hawaii	0.1
	Curacao	0.1
		3

*Fiorentini et al - Earth Moon Planets - 2006

Nuclear power plants in the world

Mean thermal power for core: 2.6 GWth

at 31 Dec. 2009

Reactors by type

Core type

PWR	Pressurized (light) Water Reactor	GCR	Gas Cooled Reactor
BWR	Boiling Water Reactor	LWGR	Light Water Graphite mod.
PHWR	Pressurized Heavy Water Reactor	FBR	Fast Breeder Reactor

Signal calculation

K=235U, 238U, 239Pu, 241Pu

Starting point: March 2010

- vacuum oscill, 2 neutrinos
- "standard" PWR fuel +35 mox
- LF: 1 Jan 2008 31 Dec 2008
- spectrum:Huber &Schwetz 2004
- 100% detection efficiency
- Enu= 1.8-10 MeV

S=93.3 (1 ± 5.4%) TNU

Power Fraction235U238U239Pu241PuPWR0.560.080.30,06MOX00.080.7080.212

 $\Delta m^2 = 7.65E - 5 eV2$ $\theta 12 = 33.46^{\circ}$

Update 1: LF for 2009-2010

 Expected Signal at LNGS (100% effic.) by using LF of different years (weighted average with days in each monthes):

LF2008	93.3	TNU
LF2009	88.6	TNU
LF2010	90.8	TNU

av. value: 90.9 TNU

LF and time variation

- about 30% variation (max-min)
- few events for month

-100% efficiency - Np=10³² protons

Update 2: PHWR fuel

	235U	238U	239Pu	241Pu
PWR	0.56	0.08	0.3	0.06
PHWR	0.54	0.41	0.02	0.024

 In 2010, 46 PHWR cores in the world (2 cores in Romania)

No effect on signal:NO PHWR 90.9 TNUYES PHWR 90.9 TNU

Update 3: reactor antinu spectrum

1)Huber and Schwetz 2004 (used in geo nu –paper)

2) Mueller et al. 2011

"...While the shapes of the spectra and their uncertainties are comparable to that of the previous analysis ..., the normalization is shifted by about +3% on average..."

Antinu spectrum and signal

The predicted signal at LNGS, 100% efficiency, averaged on 3 years is:

Huber 2004: 90.9 TNU Mueller 2011: 94.1 TNU

By using Mueller 2011
 the signal increases (+ 3.5%)

Conclusion

By using:

- <LF> in 3 years (2008-2009-2010)
- PHWR fuel
- reactor antinu spectra from Mueller et al 2011
- 100% detection efficiency
- Enu = [1.8 -10 MeV]
- Oscillation in matter : +0.6%
- Spent fuel: + 1%
 One has: S=95.6 (1 ± 5.4%) TNU
 i.e.:

 $N_{reactor}$ =17.2 (1 ± 5.4%) events/300ton/yr