3.6 The Feynman-rules for QED

For any given action (Lagrangian) we can determine the Feynman-rules to write
down the perturbative expansion of the Quantum Field Theory.

As Feynman-rules for QED, the Quantum Field Theory of electromagnatic inter-
actions among charged fermions, one finds (see, e.g., Bjorken and Drell II):

e Draw all possible connected, topologically distinct Feynman-diagrams includ-
ing loops with n external legs. Ignore vacuum-to-vacuum graphs.

e For each external photon with momentum k associate a polarization vector
eu(k, A), if itis ingoing, and €}, (k, A) for an outgoing photon.

e For each vertex of two fermions and a photon write
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where @ s denotes the charge of the fermion (leptons: Q¢ = 1).
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e For each external fermion and anti-fermion draw a line with arrow, where the
direction of the fermion and anti-fermion lines are opposite to each other. For
each external (anti-)fermion with momentum p and spin s, write u(p, s)(9(p, s))
for lines entering the graph and for lines leaving the graph write @(p, s)(v(p, s)):
e~ in initial state — ingoing electron line

u(p, s) - .
e~ in final state — outgoing electron line

u(p, ) -
et in initial state — outgoing electron line

v(p, ) o .
et in final state — ingoing electron line
v(p, $) - .
e For each internal (virtual) fermion and anti-fermion with momentum & and
mass m draw a line with arrow and associate a propagator:
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e For each internal (virtual) photon with momentum k associate a propagator,
e.g., in Feynman-gauge:

—1

SUUU U gz eI

e The four-momentum is conserved at each vertex.

e For each internal momentum corresponding to a loop which is not fixed by
momentum conservation at each vertex write [ d*k/(2m)*.

e For each closed fermion-loop multiply by (—1).

e A factor (—1) between two graphs which are only distinguished by inter-
changing two external identical fermion lines.

When writing down the expression for M ¢; using Feynman-rules, start with an
outgoing fermion line and continue going against the direction of the fermion line.
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The last step:

The probability of the scattering of two particles with four-momenta ¢4, g2 and
masses m1, me into n particles with four-momenta p1, p2, . . . p» and masses
ms, M4, ... Mnp42 1S given by the differential cross section, do, as follows

n

3.
do = ! [ d°pi

2y/[(2q192)2 — m§m3] ;-3 (27)32p;

]

@r)' 6" (> i - — @) > Myl
=1

where 3" denotes averaging (summing) over the initial (final) state degrees of free-
dom (e.g., spin and color).

The invariant matrix element M ¢; Is connected to the interaction part of the S-
matrix, My, =< pi...p.|T|q1...9~ >, and can be constructed using the
Feynman-rules of the underlying Quantum Field Theory.

For a 2 — 2 scattering process of two particles with momenta ¢1, g2 and masses
m1, me Into 2 particles with momenta p1, p2 and masses ms, m4 , the differential
cross section for the particle with momentum p; being scattered into the solid angle
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dS2 = d cos 6d¢ reads
do 1 1

dQ 647> \/[(s —m? — mB)? — Amdm3

]EMﬁF(s,t)

where we introduced the Lorentz-invariant kinematical variables (Mandelstam
variables)

s=(q+q) =m+p2)° t=(q1—p1)° = (g2 —p2)°

u= (g1 —p2)" = (g2 —p1)’
with t = m? + m3 — 2¢ip} + 2|G1||p’| cos 6.
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It is convenient to work in the center-of-mass frame, where g1 = —@, p1 = —p2
and s denotes the center-of-mass energy squared. In the limit of massless particles
all momenta |;|, |¢;| and energies p}, ¢; are equal to \/s/2. The total cross section
IS obtained by integrating over the solid angle

a—/dﬂd—a—/l dcosH/%dgbd—a
N aQ  J_, 0 ds
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There are two Feynman-diagrams contributing to this process and the correspond-
Ing matrix element reads:

)

— m + i€)
€ (k1, M1)e"™ (ka, A2)+
]
dr— Ko —m + i€

€ (k1, A\1)e"" (ka, \2)
From this we obtain the spin averaged(summed) matrix element squared

SIMPE =€t 3T (€ (i, A€ (B, An)) (€4 (Ko, Aa)e? (Ka, Ao))

A1,A2

M =0(az, s2)(—ten) Tr— (—ien)ulgr, s1)

+0(q2, 82)(—tevy) ( ) (—tevu)u(qr, s1)

vfyu ,41— ,k1 + m)vu I Uy (41— k2 +m)yuu : _

D3

k)7 — m? (41— F2)? =
81,82
_ e4g“pgwl Z Yu(1— k1 +m)vu n Dy, (g1— k2 +m)yuu 2
4 4~ (@ —ki)?—m? (1 — k2)? —m?
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This is a general feature of calculating cross sections for processes involving exter-
nal fermions, i.e. that one will encounter expressions of the form

> o(ge, s2)T* u(gqr, s1)|°

$1,82
with, e.g., I'*" = ~* k~" or """ = ~#~". Writing the above expression in spinor
components and using the spin sum for Dirac spinors one finds

> [9(g2, s2)T* u(gr, s1)[* =

51,82

> [0(gz, 2)T* (g, s1)][@(q1, )T 0(gz, 52)] =

81,82

— Z [Ud(ch,32)"7a(Q2>82)Fszub(qlaSl)ﬂc(qlvsl)(fpa)cd] -

81,82

= (2 — m2)aalty (1 + m1)be(I77)eqd =
= Tr{(f2 — m2)T"" (41 +m1)["7}

For each continuous string of fermion lines in a Feynman-diagram such a trace
over -y matrices has to be calculated.
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The traces of Dirac matrices in 4 dimensions read;:

Tr{~"} = 0 and for all other traces of odd numbers of v’s
Tr{y"~"} = 4¢™
Tr{y"y" 7"y} = 4l9"9" + ¢"7 9" — ¢" ¢""]

After having worked out the traces in our example we find:

N g2 o (q1k2)  (g1k1) 2 1 1
2 IMP =2 [(Chkl) " (q1k2) 2 ((qlk1) i (qlkz)) i

e (<q11k1> " (q11k2>)2]

This yields the differential cross section in the center-of-mass-frame as follows
(1 =4m?/s,B = /1 —7):
do _a®1[14p%cos0 27 B 27°
dQY s B |7+ p2sin?0 T4+ B2%sin?6 (7 + B2%sin? 6)?
o [1 + cos® 6
— .

o,

] forr — 0and sinf # 0

S S1n
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Finally, the exciting part - the comparison with experiment:
see, e.g., M.Derrick et al., Phys.Rev.D34, 3286 (1986).
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