3.6 The Feynman-rules for QED

For any given action (Lagrangian) we can determine the Feynman-rules to write down the perturbative expansion of the Quantum Field Theory.

As Feynman-rules for QED, the Quantum Field Theory of electromagnatic interactions among charged fermions, one finds (see, e.g., Bjorken and Drell II):

- Draw all possible connected, topologically distinct Feynman-diagrams including loops with n external legs. Ignore vacuum-to-vacuum graphs.
- For each external photon with momentum k associate a polarization vector $\epsilon_{\mu}(k, \lambda)$, if it is ingoing, and $\epsilon_{\mu}^{*}(k, \lambda)$ for an outgoing photon.
- For each vertex of two fermions and a photon write

where Q_{f} denotes the charge of the fermion (leptons: $Q_{f}=1$).
- For each external fermion and anti-fermion draw a line with arrow, where the direction of the fermion and anti-fermion lines are opposite to each other. For each external (anti-)fermion with momentum p and spin s, write $u(p, s)(\bar{v}(p, s))$ for lines entering the graph and for lines leaving the graph write $\bar{u}(p, s)(v(p, s))$:
e^{-}in initial state - ingoing electron line
$u(p, s)$

e^{-}in final state - outgoing electron line
$\bar{u}(p, s)$

e^{+}in initial state - outgoing electron line
$\bar{v}(p, s)$

e^{+}in final state - ingoing electron line
$v(p, s)$

- For each internal (virtual) fermion and anti-fermion with momentum k and mass m draw a line with arrow and associate a propagator:

$$
\longrightarrow: \frac{i}{\gamma^{\mu} k_{\mu}-m+i \epsilon}
$$

- For each internal (virtual) photon with momentum k associate a propagator, e.g., in Feynman-gauge:

$$
\oslash \Omega \Omega \cap_{\bullet}: \frac{-i}{k^{2}+i \epsilon} g_{\mu \nu}
$$

- The four-momentum is conserved at each vertex.
- For each internal momentum corresponding to a loop which is not fixed by momentum conservation at each vertex write $\int d^{4} k /(2 \pi)^{4}$.
- For each closed fermion-loop multiply by (-1).
- A factor (-1) between two graphs which are only distinguished by interchanging two external identical fermion lines.

When writing down the expression for $\mathcal{M}_{f i}$ using Feynman-rules, start with an outgoing fermion line and continue going against the direction of the fermion line.

The last step: S-matrix elements \rightarrow cross sections

The probability of the scattering of two particles with four-momenta q_{1}, q_{2} and masses m_{1}, m_{2} into n particles with four-momenta $p_{1}, p_{2}, \ldots p_{n}$ and masses $m_{3}, m_{4}, \ldots m_{n+2}$ is given by the differential cross section, $d \sigma$, as follows

$$
\begin{gathered}
d \sigma=\frac{1}{2 \sqrt{\left[\left(2 q_{1} q_{2}\right)^{2}-m_{1}^{2} m_{2}^{2}\right]}} \prod_{i=1}^{n}\left[\frac{d^{3} p_{i}}{(2 \pi)^{3} 2 p_{i}^{0}}\right] \\
(2 \pi)^{4} \delta^{4}\left(\sum_{i=1}^{n} p_{i}-q_{1}-q_{2}\right) \bar{\sum}\left|\mathcal{M}_{f i}\right|^{2}
\end{gathered}
$$

where $\bar{\sum}$ denotes averaging (summing) over the initial (final) state degrees of freedom (e.g., spin and color).

The invariant matrix element $\mathcal{M}_{f i}$ is connected to the interaction part of the S matrix, $\mathcal{M}_{f i}=<p_{1} \ldots p_{n}|T| q_{1} \ldots q_{m}>$, and can be constructed using the Feynman-rules of the underlying Quantum Field Theory.

For a $2 \rightarrow 2$ scattering process of two particles with momenta q_{1}, q_{2} and masses m_{1}, m_{2} into 2 particles with momenta p_{1}, p_{2} and masses m_{3}, m_{4}, the differential cross section for the particle with momentum p_{1} being scattered into the solid angle
$d \Omega=d \cos \theta d \phi$ reads

$$
\frac{d \sigma}{d \Omega}=\frac{1}{64 \pi^{2}} \frac{1}{\sqrt{\left[\left(s-m_{1}^{2}-m_{2}^{2}\right)^{2}-4 m_{1}^{2} m_{2}^{2}\right]}} \overline{\sum\left|\mathcal{M}_{f i}\right|^{2}(s, t), ~(s)}
$$

where we introduced the Lorentz-invariant kinematical variables (Mandelstam variables)

$$
\begin{gathered}
s=\left(q_{1}+q_{2}\right)^{2}=\left(p_{1}+p_{2}\right)^{2} \quad t=\left(q_{1}-p_{1}\right)^{2}=\left(q_{2}-p_{2}\right)^{2} \\
u=\left(q_{1}-p_{2}\right)^{2}=\left(q_{2}-p_{1}\right)^{2}
\end{gathered}
$$

with $t=m_{1}^{2}+m_{3}^{2}-2 q_{1}^{0} p_{1}^{0}+2\left|\vec{q}_{1}\right|\left|\vec{p}_{1}\right| \cos \theta$.

It is convenient to work in the center-of-mass frame, where $\vec{q}_{1}=-\vec{q}_{2}, \vec{p}_{1}=-\overrightarrow{p_{2}}$ and s denotes the center-of-mass energy squared. In the limit of massless particles all momenta $\left|\vec{p}_{i}\right|,\left|\vec{q}_{i}\right|$ and energies p_{i}^{0}, q_{i}^{0} are equal to $\sqrt{s} / 2$. The total cross section is obtained by integrating over the solid angle

$$
\sigma=\int d \Omega \frac{d \sigma}{d \Omega}=\int_{-1}^{1} d \cos \theta \int_{0}^{2 \pi} d \phi \frac{d \sigma}{d \Omega}
$$

An example: $e^{+} e^{-}$annihilation into 2 photons

There are two Feynman-diagrams contributing to this process and the corresponding matrix element reads:

$$
\begin{gathered}
\mathcal{M}=\bar{v}\left(q_{2}, s_{2}\right)\left(-i e \gamma_{\mu}\right) \frac{i}{\left(\not q_{1}-\not \not k_{1}-m+i \epsilon\right)}\left(-i e \gamma_{\nu}\right) u\left(q_{1}, s_{1}\right) \\
+\bar{v}\left(q_{2}, s_{2}\right)\left(-i e \gamma_{\nu}\right) \frac{\epsilon^{\nu *}\left(k_{1}, \lambda_{1}\right) \epsilon^{\mu *}\left(k_{2}, \lambda_{2}\right)+}{\left(\not q_{1}-\not k_{2}-m+i \epsilon\right)}\left(-i e \gamma_{\mu}\right) u\left(q_{1}, s_{1}\right) \\
\epsilon^{\nu *}\left(k_{1}, \lambda_{1}\right) \epsilon^{\mu *}\left(k_{2}, \lambda_{2}\right)
\end{gathered}
$$

From this we obtain the spin averaged(summed) matrix element squared

$$
\begin{aligned}
& \bar{\sum}|\mathcal{M}|^{2}=e^{4} \sum_{\lambda_{1}, \lambda_{2}}\left(\epsilon^{\nu *}\left(k_{1}, \lambda_{1}\right) \epsilon^{\sigma}\left(k_{1}, \lambda_{1}\right)\right)\left(\epsilon^{\mu *}\left(k_{2}, \lambda_{2}\right) \epsilon^{\rho}\left(k_{2}, \lambda_{2}\right)\right) \\
& \frac{1}{4} \sum_{s_{1}, s_{2}}\left|\frac{\bar{v} \gamma_{\mu}\left(\not q_{1}-\not k_{1}+m\right) \gamma_{\nu} u}{\left(q_{1}-k_{1}\right)^{2}-m^{2}}+\frac{\bar{v} \gamma_{\nu}\left(\not q_{1}-\not k_{2}+m\right) \gamma_{\mu} u}{\left(q_{1}-k_{2}\right)^{2}-m^{2}}\right|^{2}= \\
& =e^{4} g^{\mu \rho} g^{\nu \sigma} \frac{1}{4} \sum_{s_{1}, s_{2}}\left|\frac{\bar{v} \gamma_{\mu}\left(\not q_{1}-\not k_{1}+m\right) \gamma_{\nu} u}{\left(q_{1}-k_{1}\right)^{2}-m^{2}}+\frac{\bar{v} \gamma_{\nu}\left(\not q_{1}-\not k_{2}+m\right) \gamma_{\mu} u}{\left(q_{1}-k_{2}\right)^{2}-m^{2}}\right|^{2}
\end{aligned}
$$

This is a general feature of calculating cross sections for processes involving external fermions, i.e. that one will encounter expressions of the form

$$
\sum_{s_{1}, s_{2}}\left|\bar{v}\left(q_{2}, s_{2}\right) \Gamma^{\mu \nu} u\left(q_{1}, s_{1}\right)\right|^{2}
$$

with, e.g., $\Gamma^{\mu \nu}=\gamma^{\mu} \not \ell k \gamma^{\nu}$ or $\Gamma^{\mu \nu}=\gamma^{\mu} \gamma^{\nu}$. Writing the above expression in spinor components and using the spin sum for Dirac spinors one finds

$$
\begin{gathered}
\sum_{s_{1}, s_{2}}\left|\bar{v}\left(q_{2}, s_{2}\right) \Gamma^{\mu \nu} u\left(q_{1}, s_{1}\right)\right|^{2}= \\
\sum_{s_{1}, s_{2}}\left[\bar{v}\left(q_{2}, s_{2}\right) \Gamma^{\mu \nu} u\left(q_{1}, s_{1}\right)\right]\left[\bar{u}\left(q_{1}, s_{1}\right) \bar{\Gamma}^{\rho \sigma} v\left(q_{2}, s_{2}\right)\right]= \\
=\sum_{s_{1}, s_{2}}\left[v_{d}\left(q_{2}, s_{2}\right) \bar{v}_{a}\left(q_{2}, s_{2}\right) \Gamma_{a b}^{\mu \nu} u_{b}\left(q_{1}, s_{1}\right) \bar{u}_{c}\left(q_{1}, s_{1}\right)\left(\bar{\Gamma}^{\rho \sigma}\right)_{c d}\right]= \\
=\left(\not q_{2}-m_{2}\right)_{d a} \Gamma_{a b}^{\mu \nu}\left(\not q_{1}+m_{1}\right)_{b c}\left(\bar{\Gamma}^{\rho \sigma}\right)_{c d}= \\
=\operatorname{Tr}\left\{\left(\not q_{2}-m_{2}\right) \Gamma^{\mu \nu}\left(\not q_{1}+m_{1}\right) \bar{\Gamma}^{\rho \sigma}\right\}
\end{gathered}
$$

For each continuous string of fermion lines in a Feynman-diagram such a trace over γ matrices has to be calculated.

The traces of Dirac matrices in 4 dimensions read:

$$
\operatorname{Tr}\left\{\gamma^{\mu}\right\}=0 \text { and for all other traces of odd numbers of } \gamma \text { 's }
$$

$$
\begin{gathered}
\operatorname{Tr}\left\{\gamma^{\mu} \gamma^{\nu}\right\}=4 g^{\mu \nu} \\
\operatorname{Tr}\left\{\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}\right\}=4\left[g^{\mu \nu} g^{\rho \sigma}+g^{\mu \sigma} g^{\nu \rho}-g^{\mu \rho} g^{\nu \sigma}\right]
\end{gathered}
$$

After having worked out the traces in our example we find:

$$
\begin{gathered}
\bar{\sum}|\mathcal{M}|^{2}=2 e^{4}\left[\frac{\left(q_{1} k_{2}\right)}{\left(q_{1} k_{1}\right)}+\frac{\left(q_{1} k_{1}\right)}{\left(q_{1} k_{2}\right)}+2 m^{2}\left(\frac{1}{\left(q_{1} k_{1}\right)}+\frac{1}{\left(q_{1} k_{2}\right)}\right)+\right. \\
\left.-m^{4}\left(\frac{1}{\left(q_{1} k_{1}\right)}+\frac{1}{\left(q_{1} k_{2}\right)}\right)^{2}\right]
\end{gathered}
$$

This yields the differential cross section in the center-of-mass-frame as follows ($\tau=4 m^{2} / s, \beta=\sqrt{1-\tau}$):

$$
\begin{gathered}
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2}}{s} \\
\frac{1}{\beta}\left[\frac{1+\beta^{2} \cos ^{2} \theta}{\tau+\beta^{2} \sin ^{2} \theta}+\frac{2 \tau}{\tau+\beta^{2} \sin ^{2} \theta}-\frac{2 \tau^{2}}{\left(\tau+\beta^{2} \sin ^{2} \theta\right)^{2}}\right] \\
\rightarrow \frac{\alpha^{2}}{s}\left[\frac{1+\cos ^{2} \theta}{\sin ^{2} \theta}\right] \text { for } \tau \rightarrow 0 \text { and } \sin \theta \neq 0
\end{gathered}
$$

Finally, the exciting part - the comparison with experiment: see, e.g., M.Derrick et al., Phys.Rev.D34, 3286 (1986).

