

Università degli Studi di Ferrara

Implementing Deep Neural Networks for in-situ crop yield prediction

Supervisor

Prof Fabio Mantovani

Candidate

Nicola Macchioni

Outline

- Crop yield prediction challenge
- Rationale
- Experimental site and data taking
- Customization of the DNN pipeline
- Results and discussions

Wheat yield: from classical estimation to ML

Wheat covers 15% of the world's arable land (**220 million ha**). 66% of global wheat production (**5 of 7.7 billion q per year**) is used for food. With population growth to 9.7 billion by 2050, demand for wheat will rise by **1.3 billion q per year**.

Yield $\left(\frac{q}{ha} = 0.01 \frac{kg}{m^2}\right) = \mathcal{F}(\text{soil conditions, temperature, genotype, environmental stress, fertilizer, ...})$

Automatic extraction of color, growth uniformity, spatial patterns, canopy texture, environmental damages.

Rationale: Convolutional + Feedforward Neural Network

- The CNN processes quadratic RGB images and condenses features (i.e. texture, borders) into **1D** feature vectors through convolutions
- I employed a pre-trained CNN (EfficientNetB4*, 17 673 823 parameters) for feature extraction

RGB image

(380 px × 380 px × 3)

* M. Tan and Q. V. Le, "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks," Proceedings of the 36th International Conference on Machine Learning (ICML), 2019.

Experimental site

10

- Airborne surveys were run on a wheat field in Argelato (BO), Italy, during the final two months before harvest (May and June 2024) to acquire RGB images.
- The surveyed area (1.6 ha) is composed of 941 plots (60% durum, 40% common). The plot dimension is 1.2 m x 7.5 m, while the canopy height is 0.9 m.

(13.1 x 8.8 mm)

0.5

Survey planning and execution

- An altitude of 10 m was chosen to avoid disturbances to the wheat canopy.
- Each survey required 11
 flights due to battery limits (~20-minute duration).
- Across 11 surveys, a total of
 48 675 images (649 GB) were
 collected.

Survey	S0	S1	S2	S 3	S 4	S5	S 6	S7	S 8	S 9	S10	S11
Date	29/04	06/05	09/05	13/05	19/05	22/05	27/05	04/06	07/06	10/06	14/06	20/06

Why georeferenced orthomosaics?

An orthomosaic is a geometrically corrected aerial image obtained by merging several overlapping frames. It provides a georeferenced overview image of the entire field.

- An orthomosaic is build for each survey, for a total of **11 orthomosaics (194 GB)**
- Individual plots are georeferenced, enabling precise alignment of RGB data with measured yield

Measured yield spatial distribution

Measured yield spatial distribution

- For 27/941 plots, no measured yield was given
- They were arbitrarily selected by the company for blind testing
- The DNN was trained upon the RGB images of the plots with measured yield, and used to predict the yield for the 27 plots

Survey	Data
SO	29/04
S1	06/05
S2	09/05
S3	13/05
S4	19/05
S5	22/05
S6	27/05
S7	04/06
S8	07/06
S9	10/06
S10	14/06
S11	20/06

914 x 11 x 7 x 5 = **351 890** (13 GB)

Data

29/04

20/06

Survey

S0 S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

Rectangular masks are applied to orthomosaics to extract plot images...

914 x 11 x 7 x 5 = 351 890 (13 GB)

Rectangular masks are applied to orthomosaics to extract plot images...

... across 11 surveys

914 x **11** x 7 x 5 = 351 890 (13 GB)

Data

29/04

06/05

09/05

13/05

19/05 22/05

27/05

04/06

07/06

10/06

14/06

20/06

Survey

S0 S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

Rectangular masks are applied to orthomosaics to extract plot images...

... across 11 surveys

914 x 11 x **7** x 5 = 351 890 (13 GB)

From each plot, 7 square images (380 px x 380 px) were extracted

and the second s		

Rectangular masks are applied to orthomosaics to extract plot images...

... across 11 surveys

Data Survey S0 29/04 S1 06/05 S2 09/05 S3 13/05 S4 19/05 S5 22/05 S6 27/05 S7 04/06 S8 07/06 S9 10/06 S10 14/06

S11

20/06

Augmentation is a process that manipulates (i.e., rotation, flip) the images to avoid biases related to the nature of the acquisition.

914 x 11 x 7 x <mark>5</mark> = 351 890 (13 GB)

From each plot, 7 square images (380 px x 380 px) were extracted

DB organization for FNN training

Set	Number of plots	Number of images [10 ³]	
Train (70%)	3200	247	
Validation (20%)	915	70	
Test (10%)	455	35	
Complete DB	4570	352	

(Epoch: cycle in which the FNN processes the train set and validation set.)

- Train Set: plots used to train the model to learn relationships between plots and yield.
- Validation Set: separate from the train set, used to monitor performance during training.
- Test Set: plots not used in training, employed to evaluate the model's generalization to new data.

Loss function

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$$

Plot yield statistics

15/07 Measured yield for 914/941 plots are given **15/07 – 23/10** FNN training on 914/941 plots **23/10** Blind yield prediction on 27/941 plots and measured yield unveiling

Mean [q/ha]	77.8
Standard deviation [q/ha]	16.4
Min [q/ha]	28.8
Max [q/ha]	116.4
Median [q/ha]	79.3
16th Percentile [q/ha]	59.7
84th Percentile [q/ha]	94.8
Percentile distance [q/ha]	[-19.6 ; +15.5]
Skewness	-0.2

Yield prediction strategy

15/07 Measured yield for 914/941 plots are given **15/07 – 23/10** FNN training on 914/941 plots **23/10** Blind yield prediction on 27/941 plots and measured yield unveiling

- The FNN is trained 100 times from scratch, with train and validation sets randomly reshuffled for each iteration
- 2. Each trained FNN model predicts yields for the test set, and the final prediction is obtained by averaging results from all 100 models

Yield prediction on 91 test plots

Measured Yield [q/ha]

Blind testing on 27 unknown plots

15/07 Measured yield for 914/941 plots are given 15/07 – 23/10 FNN training on 914/941 plots 914/941 plots Plots and measured yield unveiling

MAPE [%]			
Test	Blind test		
(91 plots)	(27 plots)		
6.9 ± 0.6	7.5 ± 1.2		

- MAPE: increased by 15% relative to the test
- Good predictive accuracy with R²=0.83
- m=0.91±0.08 and q=6.77±6.70 close to 1 and 0, but not robust statistically.

Yield prediction across the entire field

	MAPE [%]	
Test (91 plots)	Blind test (27 plots)	Entire field (941 plots)
6.9 ± 0.6	7.5 ± 1.2	6.5 ± 0.2

Residual analysis shows **underestimation and overestimation** of low and high yields

Residual = Measured yield – Predicted yield

Mean residual < Q1

-3.3 ± 5.2 q/ha

Mean residual > Q3 3.0 ± 5.6 q/ha

Yield prediction across the entire field

	MAPE [%]	
Test (91 plots)	Blind test (27 plots)	Entire field (941 plots)
6.9 ± 0.6	7.5 ± 1.2	6.5 ± 0.2

Residual analysis shows **underestimation and overestimation** of low and high yields

Residual = Measured yield – Predicted yield

Mean residual < Q1

-3.3 ± 5.2 q/ha

Mean residual > Q3 3.0 ± 5.6 g/ha

Despite a weak systematic bias, systematic discrepancy at high and low yields were corrected using linear, quadratic, and cubic functions, without significant improvement.

Are surveys from all growth stages necessary?

In **early May**, plots exhibit high uniformity in phenotypic traits. In **late May**, phenotypic variability increases due to environmental stress

In **June**, the field structure stabilizes with minimal changes.

Conclusions

- Precise UAV survey planning combined with R² 1.0 orthomosaic georeferencing ensured to extract automatically 350 000 RGB images for DNN 0.9 training.
- Yield prediction on 27 blind test plots achieved a MAPE = 7.5% and a R² = 0.87 without any spatial and varietal bias.
- The inclusion of surveys across the entire wheat growth cycle enabled the DNN to account for environmental stress and variations in crop phenotype.
- Despite this study is the only one leveraging only RGB images, the performance in terms of R² is comparable to the best results reported in the literature.

Thank you for your attention!