
Why use static_cast<int>(x) instead of (int)x?

The main reason is that classic C casts make no distinction between what we call static_cast<>(),
reinterpret_cast<>(), const_cast<>(), and dynamic_cast<>(). These four things are completely
different.

A static_cast<>() is usually safe. There is a valid conversion in the language, or an appropriate
constructor that makes it possible. The only time it's a bit risky is when you cast down to an
inherited class; you must make sure that the object is a actually the descendant that you claim
it is, by means external to the language (like a flag in the object). A dynamic_cast<>() is safe as
long as the result is checked (pointer) or a possible exception is taken into account (reference).

A reinterpret_cast<>() (or a const_cast<>()) on the other hand is always dangerous. You tell the
compiler: "trust me: I know this doesn't look like a foo (this looks as if it isn't mutable), but it is".

The first problem is that it's almost impossible to tell which one will occur in a C-style cast without
looking at large and disperse pieces of code and knowing all the rules.

Let's assume these:

class CMyClass : public CMyBase {...};
class CMyOtherStuff {...} ;

CMyBase *pSomething; // filled somewhere

Now, these two are compiled the same way:

CMyClass *pMyObject;
pMyObject = static_cast<CMyClass*>(pSomething); // Safe; as long as we checked

pMyObject = (CMyClass*)(pSomething); // Same as static_cast<>
 // Safe; as long as we checked
 // but harder to read

However, let's see this almost identical code:

CMyOtherStuff *pOther;
pOther = static_cast<CMyOtherStuff*>(pSomething); // Compiler error: Can't convert

pOther = (CMyOtherStuff*)(pSomething); // No compiler error.
 // Same as reinterpret_cast<>
 // and it's wrong!!!

As you can see, there is no easy way to distinguish between the two situations without knowing a
lot about all the classes involved.

The second problem is that the C-style casts are too hard to locate. In complex expressions it can be
very hard to see C-style casts. It is virtually impossible to write an automated tool that needs to
locate C-style casts (for example a search tool) without a full blown C++ compiler front-end. On the
other hand, it's easy to search for "static_cast<" or "reinterpret_cast<".

pOther = reinterpret_cast<CMyOtherStuff*>(pSomething);
 // No compiler error.
 // but the presence of a reinterpret_cast<> is
 // like a Siren with Red Flashing Lights in your code.
 // The mere typing of it should cause you to feel VERY uncomfortable.

That means that, not only are C-style casts more dangerous, but it's a lot harder to find them all to
make sure that they are correct.

