

A minimal introduction to
C++ and to OOP

Luciano Pandola
INFN-LNGS

Mainly based on a presentation by Maria Grazia Pia
(INFN-Ge)

-- Disclaimer --

 Notice: this summary is largely
incomplete and has the only aim to ease
the following Geant4 course

 Please refer to C++ books and manuals
(there’re so many!) for more details!

Compilation

Preprocessor
Inlines #includes etc.

Compiler
Translates into machine code
Associates calls with functions

Linker
Associates functions with definitions

Object files

Executable

External Libraries, libc.so, libcs123.so

make myFirstProgram

myFirstProgram

g++ myfile.c –o myoutput

Getting started – 1

 // my first program in C++
 #include <iostream>
 int main ()
 {
 std::cout << "Hello World!";
 return 0;
 }

// This is a commentcomment line

#include <iostream>
• directive for the preprocessorpreprocessor
• used to include in the program

external libraries or files

int main ()
• beginning of the definition of

the main functionmain function
• the main function is the point

by where all C++ programs
start their execution

• all C++ programs must have a
main function

• body enclosed in braces {}
• it returns a “int” variable

(usually returning 0 means “all
right”)

Getting started – 2

 // my first program in C++
 #include <iostream>
 int main ()
 {
 std::cout << "Hello World!";
 return 0;
 }

std::cout << "Hello World";
• C++ statement
• cout is declared in the iostream

standard file within the std
namespace, used to print
something on the screen

• it belongs to the “std” set of C+
+ libraries require std::

• cin used to read from keyboard
• semicolon (;) marks the end of

the statement

return 0;
• the return statement causes the

main function to finish

Namespace std

#include <iostream>
#include <string>
...
std::string question = “What do I learn this week?”;
std::cout << question << std::endl;

Alternatively:

using namespace std;
…
string answer = “How to use Geant4”;
cout << answer << endl;

Variables
#include <iostream>
#include <string>
using namespace std;
int main ()
{
 // declaring variables:
 int a, b; // declaration
 int result = 0;
 // process:
 a = 5;
 b = 2;
 a = a + 1;
 result = a - b;
 // print out the result:
 cout << result << endl;
 const int neverChangeMe = 100;
 // terminate the program:
 return 0;
}

Scope of variables

• global variables can be referred
from anywhere in the code

• local variables: limited to the
block enclosed in braces ({})

Initialization
int a = 0; // assignment operator
int a(0); // constructor

const
the value cannot be modified after
definition

All
variable
s MUST

be
declared

Most common operators
Assignment =

Arithmetic operators +, -, *, /, %

Compound assignment +=, -=, *=, /=, … a+=5; // a=a+5;

Increase and decrease ++, -- a++; // a=a+1;

Relational and equality operators ==, !=, >, <, >=, <=

Logical operators ! (not), && (and), || (or)

Conditional operator (?) a>b ? a : b
// returns whichever is greater, a or b

Explicit type casting operator
int i; float f = 3.14; i = (int) f;

Control structures - 1

for (initialization; condition; increase) statement;

for (n=10; n>0; n--)
 {
 cout << n << ", ";
 if (n==3)
 {
 cout << "countdown aborted!";
 break;
 }
 }

std::ifstream myfile(“myfile.dat”);
for (; !myfile.eof();)
 {
 int var;
 myfile >> var;
 }
myfile.close()

reads until file is overNotice: the for loop is executed as
long as the “condition” is true. It is
the only necessary part of the for

structure

Control structures - 2

if (x == 100)
 {
 cout << "x is ";
 cout << x;
 }

if (x == 100)
 cout << "x is 100";
else
 cout << "x is not 100";

while (n>0) {
 cout << n << ", ";
 --n;
}

do {
 cout << "Enter number (0 to end): ";
 cin >> n;
 cout << "You entered: " << n << endl;
} while (n != 0);

if (x)
 cout << "x is not 0";
else
 cout << "x is 0";

shortcut for (x !=
0)

Reference and pointers - 1

The address that locates a variable within memory is what we call a
reference to that variable

x = &y; // reference operator & “the address of”

A variable which stores a reference to another variable is called a pointer
Pointers are said to "point to" the variable whose reference they store

z = *x; // z equal to “value pointed by” x

pointer

x = 0; // null pointer (not pointing to any valid reference or

memory address initialization)

Reference and pointers - 2
#include <iostream>
using namespace std;
int main ()
{
 double x = 10.; // declaration
 double* pointer = &x;

 //Let’s print
 cout << x << endl;
 cout << pointer << endl;
 cout << *pointer << endl;
 cout << &x << endl;

 // terminate the program:
 return 0;
}

variable of type “double” (double-
precision real) value set to 10.

pointer for a “double” variable. Now it
contains address of variable x

These lines will print the content of
variable x (namely, 10)

Notice: if we change the value stored in
variable x (e.g. x=x+5), the pointer does

not change

These lines will print the memory
address (=the reference) of variable x

(something like 0xbf8595d0)

Dynamic memory - 1

Operator new

pointer = new type
Student* paul = new Student;

double* x = new double;

If the allocation of this block of memory failed,
the failure could be detected by checking if paul took a null pointer value:

if (paul == 0) {
 // error assigning memory, take measures
};

C++ allows for memory allocation at run-time
(amount of memory required is not pre-determined

by the compiler)

The operator gives back the pointer to the
allocated memory area

Dynamic memory - 2

Operator delete delete paul;

Dynamic memory should be freed once it is no longer needed,
so that the memory becomes available again for other requests of dynamic memory

Rule of thumb: every new must be paired by a
delete

Failure to free memory: memory leak (
system crash)

Dynamic vs. static
memory

Two ways for memory allocation:

o static (“on the stack”)

The amount of memory required for the program is
determined at compilation time. Such amount is
completely booked during the execution of the program
(might be not efficient) same as FORTRAN

o dynamic (“on the heap”)

memory is allocated and released dynamically during
the program execution. Possibly more efficient use of
memory but requires care! You may run out of memory!
 crash!

double yy;
double* x;

double* x = new double;
*x = 10;
delete x;

Functions - 1

Type name(parameter1, parameter2, ...)
{
 statements…;
 return somethingOfType;
}

No return type: void

void printMe(double x)
{

 std::cout << x << std::endl;
}

In C++ all function
parameters are passed by

copy.

Namely: if you modify
them in the function, this
will not affect the initial

value:
{
 double x = 10;
 double y =
some_function(x);
 ...
}
x is still 10 here, even if x is
modified inside
some_function()

Functions - 2

int myFunction (int first, int second);

Arguments can be passed by value and by reference

int myFunction (int& first, int& second);

int myFunction (const int& first, const int& second);

Pass a copy of parameters

Pass a reference to
parameters

They may be modified
in the function!

Pass a const reference to parameters
They may not be modified in the function!

More fun on functions - 1

Default values in parameters

double divide (double a, double b=2.)
{
 double r;
 r = a / b;
 return r;
}

int main ()
{
 cout << divide (12.) << endl;
 cout << divide(12.,3.) << endl;
 return 0;
}

Notice: functions are distinguishable from variables
because of () they are required also for functions without

parameters

More fun on functions - 2

Overloaded functions Same name, different parameter type

int operate (int a, int b)
{
 return (a*b);
}

A function cannot be overloaded only by its return type

double operate (double a, double b)
{
 return (a/b);
}

{
 cout << operate (1,2) << endl; //will return 2
 cout << operate (1.0,2.0)<< endl; //will return 0.5
}

the compiler will decide which version of the function must be
executed

OOP basics

OOP basic concepts
 Object and class

 A class defines the abstract characteristics of a thing
(object), including the thing's attributes and the thing's
behaviour (e.g. a blueprint of a house)

 A class can contain variables and functions (methods)
members of the class

 A class is a kind of “user-defined data type”, an object is like
a “variable” of this type.

 Inheritance
 “Subclasses” are more specialized versions of a class, which

inherit attributes and behaviours from their parent classes
(and can introduce their own)

 Encapsulation
 Each object exposes to any class a certain interface (i.e.

those members accessible to that class)
 Members can be public, protected or private

Class and object - 1
Object: is characterized by attributes (which define its

state) and operations

A class is the blueprint of objects of the same type

class Rectangle {
 public:
 Rectangle (double,double); // constructor (takes 2 double variables)
 ~Rectangle() { // empty; } // destructor
 double area () { return (width * height); } // member function
 private:
 double width, height; // data members
};

an object is a concrete realization of a class like house
(= object) and blueprint (class)

Class and object - 2

// the class Rectangle is defined in a way that you need two double
// parameters to create a real object (constructor)

Rectangle rectangleA (3.,4.); // instantiate an object of type “Rectangle”
Rectangle* rectangleB = new Rectangle(5.,6.); //pointer of type “Rectangle”

// let’s invoke the member function area() of Rectangle
cout << “A area: " << rectangleA.area() << endl;
cout << “B area: " << rectangleB->area() << endl;

//release dynamically allocated memory
delete rectangleB; // invokes the destructor

The class interface in C++

How a class “interacts” with the rest of the world. Usually
defined in a header (.h or .hh) file:

class Car {
 public:
 // Members can be accessed by any object (anywhere else
from the world)

 protected:
 // Can only be accessed by Car and its derived objects

 private:
 // Can only be accessed by Car for its own use.
};

Class member functions

class Rectangle {
 public:
 Rectangle (double,double); // constructor (takes 2 double variables)
 ~Rectangle() { // empty; } // destructor
 double area () { return (width * height); } // member function
 private:
 double width, height; // data members
};

Rectangle::Rectangle(double v1,double v2)
{
 width = v1; height=v2;
}

Short functions can be
defined “inline”. More

complex functions are usually
defined separately

type class::function()

(but costructor has no type)

Class members

int main() {
 Rectangle* myRectangle = new Rectangle(); //won’t work
 Rectangle* myRectangle = new Rectangle(3.,4.);
 double theArea = myRectangle->area(); //invokes a public member (function)

 myRectangle->width = 10; //won’t work: tries to access a private member

 delete myRectangle; //invokes the destructor
};

constructor needs two parameters

Classes: basic design rules
 Hide all member variables (use public methods instead)
 Hide implementation functions and data (namely those

that are not necessary/useful in other parts of the program)
 Minimize the number of public member functions
 Use const whenever possible / needed

A invokes a function of a B object
A creates an object of type B
A has a data member of type B

OK:

A uses data directly from B
(without using B’s interface)

Bad:

A directly manipulates data in BEven worse:

Inheritance
 A key feature of C++
 Inheritance allows to create classes derived from

other classes
 Public inheritance defines an “is-a” relationship

 What applies to a base class applies to its derived
classes. Derived may add further details

class Base {
 public:
 virtual ~Base() {}
 virtual void f() {…}
 private:
 int b; …
};

class Derived : public Base {
 public:
 virtual ~Derived() {}
 virtual void f() {…}
 …
};

Polymorphism

 Mechanism that allows a derived class to modify the
behaviour of a member declared in a base class
namely, the derived class provides an alternative
implementation of a member of the base class

Which f() gets called?
Base* b = new Derived;
b->f();
delete b;

Notice: a pointer of the Base class can be used for an object of the
Derived class (but only members that are present in the base class

can be accessed)

Advantage: many derived classes can be treated in the same way
using the “base” interface see next slide

Inheritance and virtual
functions - 1

class Circle : public Shape
{

public:
 Circle (double r);

void draw();
void mynicefunction();

 private:
double radius;

};

class Rectangle : public Shape
{

public:
Rectangle(double h, double w);

 private:
double height, width;

};

class Shape
{
 public:
 Shape();
 virtual void draw();
};

Circle and Rectangle are
both derived classes of

Shape.

Notice: Circle has its own
version of draw(),
Rectangle has not.

Inheritance and virtual
functions - 2

A A virtual functionvirtual function defines the interfacedefines the interface and provides an and provides an
implementation; implementation; derived classesderived classes maymay provide provide alternative alternative

implementationsimplementations

Shape* s1 = new Circle(1.);

Shape* s2 = new Rectangle(1.,2.);

s1->draw(); //function from Circle

s2->draw(); //function from Shape (Rectangle has not its own!)

s1->mynicefunction(); //won’t work, function not in Shape!

Circle* c1 = new Circle(1.);

c1->mynicefunction(); //this will work

Use a pointer to the
base class for derived
objects

Abstract classes and
interfaces

class Shape
{
 public:
 Shape();
 virtual area() =

0;
};

A pure virtual function
defines the interface

and delegates the implementation
to derived classes (no default!)

Abstract class, cannot be instantiated:

Shape* s1 = new Shape(); //won’t work

Abstract Interface
a class containing at least one

pure virtual function

Abstract classes and
interfaces

class Circle : public Shape
{

public:
 Circle (double r);

double area();
 private:

double radius;
};

class Rectangle : public Shape
{

public:
Rectangle(double h, double

w);
double area();

 private:
double height, width;

};
Concrete class

Concrete classes must provide their own
implementation of the virtual method(s) of the base

class

Inheritance and virtual
functions

Inheritance of the
interface

Inheritance of the
implementation

Non virtual
function Mandatory

Mandatory (cannot provide
alternative versions)

Virtual
function

Mandatory
By default

Possible to reimplement

Pure virtual
function Mandatory

Implementation is
mandatory (must provide

an implementation)

Shape* s1 = new Shape; //won’t work if Shape is abstract!

Shape* s2 = new Circle(1.); //ok (if Circle is not abstract)

Circle* c1 = new Circle(1.); //ok, can also use mynicefunction();

A few practical issues and
miscellanea

Organization strategy

image.hh Header file: Class definition

.cc file: Full implementation

Main function

image.cc

main.cc

void SetAllPixels(const Vec3& color);

void Image::SetAllPixels(const Vec3& color) {
 for (int i = 0; i < width*height; i++)
 data[i] = color;
}

myImage.SetAllPixels(clearColor);

How a header file looks
like

begin header guard #ifndef SEGMENT_HEADER
#define SEGMENT_HEADER

class Point;
class Segment
{
public:
 Segment();
 virtual ~Segment();
 double length();
private:
 Point* p0,
 Point* p1;
};
#endif // SEGMENT_HEADER

Segment.hheader file

forward
declaration

class declaration

constructor

destructor

end header guard

member
variablesneed semi-

colon

member
functions

Forward declaration

 In header files, only
include what you must

 If only pointers to a class
are used, use forward
declarations (than put the
real #include in the .cc)

Class Gui
{
//
};

Gui.hh

//Forward declaration

class Gui;

class Controller
{
//...
private:
 Gui* myGui;
//...
};

Controller.hh

Header and
implementation

#ifndef SEGMENT_HEADER
#define SEGMENT_HEADER

class Point;
class Segment
{
public:
 Segment();
 virtual ~Segment();
 double length();
private:
 Point* p0,
 Point* p1;
};
#endif // SEGMENT_HEADER

File Segment.hh #include “Segment.hh”
#include “Point.hh”

Segment::Segment() // constructor
{
 p0 = new Point(0.,0.);
 p1 = new Point(1.,1.);
}
Segment::~Segment() // destructor
{
 delete p0;
 delete p1;
}
double Segment::length()
{
 function implementation …
}

File Segment.cc

Segmentation fault (core
dumped)

int intArray[10];
intArray[10] = 6837;
//Remember: in C++ array index starts from 0!

Image* image;
image->SetAllPixels(colour);

Typical causes:

Access outside of array
bounds

Attempt to access
a NULL or
previously
deleted pointer

These errors are often very difficult to catch
and can cause erratic, unpredictable

behaviour

More C++

Standard Template Library
(STL)

ContainersContainers
 Sequence

 vector: array in contiguous memory
 list: doubly-linked list (fast

insert/delete)
 deque: double-ended queue
 stack, queue, priority queue

 Associative
 map: collection of (key,value) pairs
 set: map with values ignored
 multimap, multiset (duplicate keys)

 Other
 string, basic_string
 valarray:for numeric computation
 bitset: set of N bits

Algorithms Algorithms
 Non-modifying

 find, search, mismatch,
count, for_each

 Modifying
 copy, transform/apply,

replace, remove
 Others

 unique, reverse,
random_shuffle

 sort, merge, partition
 set_union, set_intersection,

set_difference
 min, max, min_element,

max_element
 next_permutation,

prev_permutation

std::vector

#include <vector>
void FunctionExample()
{

 std::vector<int> v(10);

 int a0 = v[3]; // unchecked access

 int a1 = v.at(3); // checked access

 v.push_backpush_back(2); // append element to end

 v.pop_back(); // remove last element

 size_t howbig = v.sizesize(); // get # of elements

 v.insert(v.begin()+5, 2); // insert 2 after 5th element

}

use std::vector,
not built-in C-style array,

whenever possible

Dynamic management of arrays having size is not known
a priori!

std::string

Example:
#include <string>

void FunctionExample()
{
 std::string s, t;
 char c = 'a';
 s.push_back(c); // s is now “a”;
 const char* cc = s.c_str(); // get ptr to “a”
 const char dd[] = ‘like’;
 t = dd; // t is now “like”;
 t = s + t; // append “like” to “a”
}

Backup

C++ “rule of thumb”

Uninitialized pointers are bad!
int* i;

if (someCondition) {
…
i = new int;

} else if (anotherCondition) {
…
i = new int;

}

*i = someVariable;

“null pointer exception”

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

