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We perform the first next-to-leading order computation of the γ(∗)
→ V (ρ, φ, ω) impact factor in

the QCD shockwave approach and in the most general kinematics. This paves the way to the very
first quantitative study of high-energy nucleon and nucleus saturation beyond the leading order, in
various processes to be measured in ep, eA, pp and pA collisions at existing and future colliders.

Introduction. Among the various achievements of the
HERA experiments, two landmark results emerged from
e±p deep inelastic scattering (DIS). First, diffractive
events represent a fraction of up to 10% of the total
e±p cross-section for DIS [1, 2]. Second, the study of
the kinematical domain where the photon virtuality Q2

is moderate and the Bjorken x variable is asymptotically
small revealed that the proton saturates, both in inclusive
and diffractive deep inelastic scattering, as first exhibited
within the Golec-Biernat and Wüsthoff model [3]. It has
been further realized that exclusive diffractive processes
could give an excellent lever arm to scrutinize the pro-
ton’s internal structure at asymptotic energies. In partic-
ular, the exclusive diffractive production of a light vector
meson V (ρ, φ, ω) [4–6]

γ(∗)p → V p (1)

was studied at HERA both for forward [7] and large
t [7, 8] kinematics. On top of the photon virtuality, the
transverse momenta exchanged in the t−channel give ac-
cess to the impact parameter distribution of partons in-
side the proton via Fourier transformation.
Understanding the highly energetic proton state is the-

oretically particularly appealing and phenomenologically
valuable. First, at large center of mass energy

√
s, the

proton is a dense system with high field strengths, still
in the weak-coupling regime, and perturbative effective
resummation methods must be applied. Second, in the
context of relativistic heavy ion collisions, in view of pro-
ducing and studying the quark-gluon plasma, the collid-

ing nuclei in initial stages are saturated. Thus, saturation
is one of the most important and longstanding problems
of QCD.
In different frameworks, either based on a QCD shock-

wave formalism [9], a large-Nc dipole model [10, 11] or
an effective perturbative weak-coupling field theory ap-
proach [12], a color glass condensate (CGC) picture has
emerged, describing the small-x dynamics of QCD to-
wards the saturation regime.
Still, it has been realized that in order to get a de-

tailed understanding of the properties of the high-energy
proton, precise quantitative predictions are absolute pre-
requisites. This means that one should go beyond leading
order computations, a task which is particularly difficult
to achieve in the above mentioned frameworks. A first
step towards such an improvement was performed at the
level of the evolution kernel for CGC, including first the
running coupling effects [13] and finally the whole next-
to-leading order (NLO) correction to the kernel [14–16].
First steps have been made concerning the corrections to
the coupling to a probe. The fully inclusive NLO impact
factor has been obtained for the coupling to a γ∗ [17].
The impact factor for semi-inclusive hadron production,
involving the coupling to a parton, was computed in view
of studying p⊥-broadening effects [18–20]. Finally, the
first computation of an exclusive NLO impact factor in
the CGC framework was performed in Refs. [21, 22].
In this Letter, we study the exclusive production of a

neutral longitudinally polarized vector meson with NLO
accuracy. As first noticed in Ref. [23], one can describe
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in DIS the exclusive production of a meson from a qq̄
pair based on the collinear QCD factorization scheme.
At moderate energies, the amplitude is given as a con-
volution of quark or gluon generalized parton distribu-
tions (GPDs) in the nucleon, the distribution amplitude
(DA) for the light meson, and a perturbatively calculable
hard scattering amplitude [24, 25]. The DAs and GPDs
are subject to specific QCD evolution equations [26].
Still, such a factorization is proven only for the twist-
2 dominated transition between a longitudinally polar-
ized photon and a longitudinally polarized vector me-
son [24]. Explicit breaking of collinear factorization oc-
curs at twist 3, through end-point singularities, in ex-
clusive electroproduction of transversely polarized vector
mesons [27]. As a remedy, an improved collinear approx-
imation scheme [28] has been proposed and applied to ρ
electroproduction [29]. At high energies, where the ex-
change of t−channel gluons dominates, kT−factorization
applies. The end-point singularities are naturally reg-
ularized by the transverse momenta of these t−channel
gluons [30, 31], providing models [32] to describe HERA
data, including saturation effects [33].
In this Letter, we will carry out, for the first time in

the shockwave context, a complete NLO calculation for
exclusive diffractive meson production in γ(∗)p or γ(∗)A
collisions, with completely general kinematics, by com-
bining the collinear factorization and high energy small-x
factorization techniques. We will show the full infrared

safe results for the γ∗
L → VL and γ

(∗)
T → VL transitions.

The details of the calculation will be provided in a sepa-
rate article [34].
The present result provides the first calculation of

higher order corrections, in a complete NLO framework,
of a vast class of processes. Indeed, the complete gener-
ality of the kinematics allows it to be applied to a wide
range of experimental conditions. It can describe either
the electroproduction of vector mesons with general kine-
matics, or their photoproduction at large transfered mo-
mentum. As a result, it can be used both at ep and eA
colliders, like the future EIC [35] or LHeC [36] and in ul-
traperipheral collisions at RHIC or at the LHC [37, 38].
The shockwave framework. Let us define two light-

like vectors n1 and n2 such that the partons in the up-
per (resp. lower) impact factor have large momentum
components along n1 (resp. n2). We write the Sudakov
expansion of any vector p as

pµ ≡ p+nµ
1 + p−nµ

2 + pµ⊥. (2)

Normalizing the lightcone basis so that n1 · n2 = 1, we
write the scalar product of two vectors as

p · q ≡ p+q− + p−q+ + p⊥ · q⊥
= p+q− + p−q+ − ~p · ~q . (3)

Within the shockwave formalism, the computation is per-
formed in a frame where the target is highly boosted. We

separate the gluonic field into an external (resp. internal)
field containing the gluons with momentum components
along n1 below (resp. above) the cutoff eηp+γ , where pγ
is the momentum of the photon and η is the rapidity di-
vide, which eventually separates the gluons belonging to
the projectile impact factor from the ones attributed to
the shockwave.
We work in the QCD lightcone gauge n2 ·A = 0. In the

high energy limit and in this gauge, the external field bµη
is located at zero lightcone time z+ and has the eikonal
Lorentz structure

bµη (z) = b−η (~z ) δ(z
+)nµ

2 . (4)

We define the high-energy Wilson line operator as

Uη
~z ≡ P exp

[

ig

∫ +∞

−∞

dz+b−η (z)

]

. (5)

The scattering amplitude is obtained by convoluting the
impact factor with the matrix elements of operators built
from Wilson line operators acting on the target states.
In the context of such a NLO diffractive process, we

introduce the dipole and double dipole operators in mo-
mentum space from Wilson line operators in the funda-
mental representation of SU(Nc) as

[

Tr(Uη
1U

η†
2 )−Nc

]

(~p1, ~p2) (6)

≡
∫

dd~z1d
d~z2 e

−i(~p1·~z1)−i(~p2·~z2)
[

Tr(Uη
~z1
Uη†
~z2
)−Nc

]

,

and
[

Tr(Uη
1U

η†
3 )Tr(Uη

3U
η†
2 )−NcTr(U

η
1U

η†
2 )
]

(~p1, ~p2, ~p3)

≡
∫

dd~z1d
d~z2d

d~z3 e
−i(~p1·~z1)−i(~p2·~z2)−i(~p3·~z3) (7)

×
[

Tr(Uη
~z1
Uη†
~z3
)Tr(Uη

~z3
Uη†
~z2
)−NcTr(U

η
~z1
Uη†
~z2
)
]

,

where d = 2 + 2ǫ is the transverse dimension. In these
equations, ~z1, ~z2, ~z3 are respectively the transverse coor-
dinates of the interaction points of the quark, the anti-
quark and the gluon with the external shockwave field.
Their conjugate transverse momenta ~p1, ~p2, ~p3 are the in-
coming effective momenta acquired via interaction with
the t−channel shockwave field.
Factorization scheme. At leading order accuracy, the

factorized amplitude is the action of an operator Aη
LO

on target states. This operator is the convolution of the
dipole operator, a hard part Φ0 to which we will refer as
the impact factor, and a DA. The twist 2 DA ϕ for a lon-
gitudinally polarized vector meson VL is defined via the
matrix element of a non-local lightcone operator renor-
malized at scale µF

〈VL(pV )|Ψ̄(y)γµΨ(0)|0〉y2→0

= fV pµV

∫ 1

0

dx eix(pV ·y) ϕ(x, µF ) , (8)
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where the gauge link between fields was omitted since it
does not contribute in the chosen lightcone gauge. We
write the operator as follows:

Aη
LO ≡ −eV fV εβ

Nc

∫ 1

0

dxϕ (x, µF )

∫

dd~p1

(2π)
d

dd~p2

(2π)
d

(9)

× (2π)
d+1

δ
(

p+V − p+γ
)

δ (~pV − ~pγ − ~p1 − ~p2)

× Φβ
0 (x, ~p1, ~p2)

[

Tr(Uη
1U

η†
2 )−Nc

]

(~p1, ~p2) .

Here εβ is the polarization vector of the photon, fV is
the meson coupling which is related to the vector meson
decay into leptons and eV is an effective electric quark
charge which takes into account the flavor content of the
meson [39]. Φ0 is obtained by computing diagram 1 in
Fig. 1 using the effective shockwave Feynman rules [22].

In practice to obtain a full physical amplitude one
should first solve the Jalilian-Marian-Iancu-McLerran-
Weigert-Leonidov-Kovner (JIMWLK) [12] evolution
equation for the Wilson line operators, which here re-
duces to the dipole Balitsky-Kovchegov (BK) [9, 11] evo-
lution, and act on the target states. For example in the
case of a scattering off a proton, the leading order am-
plitude Aη

LO ≡ 〈P ′|Aη
LO|P 〉 will be given in terms of the

non-forward dipole-proton scattering amplitude

〈P ′| [Tr(Uη
1U

η†
2 )−Nc] (~p1, ~p2) |P 〉 . (10)

At NLO accuracy the double dipole operator starts to
contribute and we define similarly to the LO case the
NLO operator

Aη
NLO ≡ −eV fV εβ

Nc

∫ 1

0

dxϕ (x, µF )

∫

dd~p1

(2π)
d

dd~p2

(2π)
d

dd~p3

(2π)
d
(2π)

d+1
δ
(

p+V − p+γ
)

δ (~pV − ~pγ − ~p1 − ~p2 − ~p3)

×αsΓ (1− ǫ)

(4π)1+ǫ

{(

N2
c − 1

Nc

)

Φβ
1 (x, ~p1, ~p2)

[

Tr(Uη
1U

η†
2 )−Nc

]

(~p1, ~p2) (2π)
d δ (~p3)

+Φβ
2 (x, ~p1, ~p2, ~p3)

[

Tr(Uη†
1 Uη†

3 )Tr(Uη†
3 Uη†

2 )−NcTr(U
η
1U

η†
2 )
]

(~p1, ~p2, ~p3)
}

. (11)

The explicit expressions for Φ1 and Φ2, given below in
Eqs. (25-28), are the main results of the present Let-
ter. Again, in the example of the scattering on a pro-
ton, the computation of the NLO amplitude Aη

NLO ≡
〈P ′|Aη

NLO|P 〉 will now involve, in addition to the ampli-
tude (10), the non-forward double-dipole-proton scatter-
ing amplitude

〈P ′|[Tr(Uη†
1 Uη†

3 )Tr(Uη†
3 Uη†

2 )

−NcTr(U
η
1U

η†
2 )] (~p1, ~p2, ~p3) |P 〉 . (12)

In order to get phenomenological predictions for the
whole process (1) at NLO, one should combine the NLO
impact factors Φ1 and Φ2 with the two scattering ampli-
tudes (10, 12), which are obtained by solving the NLO
JIMWLK equation with initial conditions at rapidity η0
with p+target = eη0p+γ . Then

η − η0 = ln
s

s0
, (13)

where the arbitrary scale s0 ∼ p+target p
−
target ≪ s is a

typical target scale.
In Eq. (11), Φ2 is obtained by computing diagrams 5

and 6 (and their q ↔ q̄ symmetric counterparts) with
~p3 6= ~0, see Fig. 1. Φ1 is the sum of the ~p3 = ~0 contribu-
tion from the same two diagrams with the contribution
from diagrams 2, 3 (and its q ↔ q̄ symmetric counter-
part) and 4. For readability we will now omit the depen-
dence on the t-channel transverse momenta in the impact

Diagram 1 Diagram 2

Diagram 6Diagram 5Diagram 4

Diagram 3

PSfrag replacements

1

FIG. 1. Contributions to the impact factor for γ∗
→ V transi-

tion. The gray blobs stand for the external (shockwave) field
while the white blobs denote the distribution amplitudes of
the produced vector meson.

factors Φi. The QED gauge invariance relation

pγ · Φi = 0 (14)

for i = 0, 1, 2 allows one to reduce the computation to
the only evaluation of Φ+

i and Φβ
i⊥. In the following we

will work in the frame where the transverse momentum
of the photon is ~0. The contributions to the γ∗

L → VL

and γ
(∗)
T → VL transitions are then given by

εL · Φi =
Q

p+γ
Φ+

i and εT · Φi = ε⊥ · Φi⊥ . (15)

Divergences and evolution equations. First, let us
note that in the shockwave framework, contrary to the
Balitsky-Fadin-Kuraev-Lipatov (BFKL) [40] approach,
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the coupling to the t−channel exchanged state does not
involve the QCD coupling constant. As a consequence,
the LO impact factor as defined in Eq. (9) is of order α0

s,
while the NLO impact factor in Eq. (11) is of order αs.
Thus the running of αs has to be considered as an NNLO
effect when computing an impact factor.
The intermediate steps of the calculation involve

various types of divergences, namely ultraviolet, soft,
collinear and the spurious lightcone gauge pole (to which

we will refer as the rapidity divergence). These diver-
gences are controlled by dimensional regularization in
transverse space d ≡ 2+2ǫ, and by an infinitesimal cutoff
αp+γ in longitudinal space. In particular the rapidity di-
vergence, which is regularized by the α cut-off, is canceled
via the BK-JIMWLK evolution equation for the dipole
operator, which allows one to get rid of the dependence
on α. In momentum space it reads [22]

∂

∂η

[

Tr(Uη
1U

η†
2 )−Nc

]

(~p1, ~p2) = αsµ
2−d

∫

dd~k1d
d~k2d

d~k3
(2π)2d

δ(~k1 + ~k2 + ~k3 − ~p1 − ~p2) (16)

×H(~k1, ~k2, ~k3, ~p1, ~p2)
[

Tr(Uη
1U

η†
3 )Tr(Uη

3U
η†
2 )−NcTr(U

η
1U

η†
2 )
]

(~k1, ~k2, ~k3),

where the kernel H reads

H(~p1, ~p2, ~p3, ~k1, ~k2) = 4
(~k1 − ~p1) · (~k2 − ~p2)

(~k1 − ~p1)2(~k2 − ~p2)2
(17)

+
Γ(1− d

2 )Γ
2(d2 )

Γ(d− 1)







2π
d

2 δ(~k2 − ~p2)
[

(~k1 − ~p1)2
]1− d

2

+
2π

d

2 δ(~k1 − ~p1)
[

(~k2 − ~p2)2
]1− d

2






.

Evolving the Wilson lines from α to η creates a countert-
erm to the double dipole contribution as follows:

Φ̃β
2 (η, α, ~p1, ~p2, ~p3) = − µ2−d

Γ(1− ǫ)π1+ǫ
ln

(

eη

α

)

×
∫

dd~k1d
d~k2 δ(~pV − ~pγ − ~k1 − ~k2) (18)

×H(~p1, ~p2, ~p3, ~k1, ~k2)Φ
β
0 (x,

~k1, ~k2) .

This counterterm allows one to get rid of the dependence

on α in the NLO contribution. By similar arguments one
can cancel the overall dependence of the impact factor on
the rapidity divide η up to NNLO terms: indeed chang-
ing η to η′ and evolving the LO amplitude from η to η′

gives rise to Φ̃β
2 (η

′, η, ~p1, ~p2, ~p3), whose dependence on η
is canceled by combining it with the NLO impact factor.

The collinear divergence is cancelled via the Efremov-
Radyushkin-Brodsky-Lepage (ERBL) evolution equation
for the twist 2 DA ϕ. In the MS scheme it reads

∂ϕ(x, µF )

∂ lnµ2
F

=
αsCF

2π

Γ(1− ǫ)

(4π)ǫ

(

µ2
F

µ2

)ǫ∫ 1

0

dz ϕ(z, µF )K(x, z),

(19)

where CF ≡ (N2
c − 1)/(2Nc) is the Casimir in the funda-

mental representation of SU(Nc) and K(x, z) is the well
known ERBL evolution kernel [26]

K(x, z) =
1− x

1− z

(

1 +

[

1

x− z

]

+

)

θ(x − z) +
x

z

(

1 +

[

1

z − x

]

+

)

θ(z − x) +
3

2
δ(z − x). (20)

For a function F (z) which behaves as F0 + F1 ln(z − z0)
for z → z0 we defined the + prescription as

∫ 1

0

dz

[

1

z − z0

]

+

F (z) ≡
∫ 1

0

dz
F (z)− F0 − F1 ln(z − z0)

z − z0
.

(21)
Evolving the DA in the LO contribution from 0 to µF

gives rise to a counterterm to the NLO dipole contribu-
tion, which reads

Φ̃β
1 (x, µF ) = −

∫ 1

0

dzK(z, x)

[

1

ǫ
+ ln

(

µ2
F

µ2

)]

Φβ
0 (z). (22)

Infrared finiteness and final results. The leading or-
der impact factor reads

Φ+
0 (x) =

2xx̄
(

p+V
)2

[

(x̄~p1 − x~p2)
2
+ xx̄Q2

] , (23)

Φβ
0⊥(x) =

(x− x̄)p+V (x̄p
β
1⊥ − xpβ2⊥)

[

(x̄~p1 − x~p2)
2 + xx̄Q2

] , (24)

where x̄ ≡ 1− x.
Let us consider separately the NLO dipole contribution

Φ1 and the double dipole contribution Φ2 since they are
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independently gauge invariant and infrared finite, and
the mechanisms for the cancellation of their divergences
are different.

The sum of the dipole contribution from each diagram
with the contribution in Eq. (22) from the ERBL evolu-
tion of the DA is finite. It reads:

Φ+
1 (x) =

∫ x

0

dz

(

x− z

x

)






1 +

(

1 +

[

1

z

]

+

)

ln







(

((x̄+ z)~p1 − (x − z)~p2)
2
+ (x− z)(x̄+ z)Q2

)2

µ2
F (x− z)(x̄+ z)Q2












Φ+

0 (x− z)

+
1

2
Φ+

0 (x)

[

1

2
ln2
( x̄

x

)

+ 3− π2

6
− 3

2
ln

(

(

(x̄~p1 − x~p2)
2 + xx̄Q2

)2

xx̄µ2
FQ

2

)]

+

(

p+γ
)2

2xx̄

∫ x

0

dz
[

(φ5)LL |~p3=~0 + (φ6)LL |~p3=~0

]

+
+ (x ↔ x̄, ~p1 ↔ ~p2) (25)

for a longitudinal photon, and

Φβ
1⊥ (x) =

1

4

[

ln2
( x̄

x

)

− π2

3
+ 6− 3 ln

(

(x̄~p1 − x~p2)
2 + xx̄Q2

µ2
F

)

+ 3
xx̄Q2

(x̄~p1 − x~p2)2
ln

(

(x̄~p1 − x~p2)
2 + xx̄Q2

xx̄Q2

)]

Φβ
0⊥ (x)

+

∫ x

0

dz

(

x− z

x

)

Φβ
0⊥ (x− z)

[

1 +

(

1 +

[

1

z

]

+

)

ln

(

((x̄+ z) ~p1 − (x− z) ~p2)
2 + (x− z) (x̄+ z)Q2

µ2
F

)

−
(

1 +

[

1

z

]

+

)

(x− z) (x̄+ z)Q2

((x̄+ z) ~p1 − (x− z) ~p2)2
ln

(

((x̄+ z) ~p1 − (x− z) ~p2)
2 + (x− z) (x̄+ z)Q2

(x− z) (x̄+ z)Q2

)

]

+
p+γ
2xx̄

∫ x

0

dz
[

(φ5)
β
TL |~p3=~0 + (φ6)

β
TL |~p3=~0

]

+
+ (x ↔ x̄, ~p1 ↔ ~p2) (26)

for a transverse photon. The quantities (φ5,6)LL and

(φ5,6)
β
TL can be extracted from Ref. [22], with the change

of variables (~pq, ~pq̄) → (x~pV , x̄~pV ) [41]. One should un-
derstand [φ]+ in Eqs. (25) and (26) as the finite term
which results from the replacement of the 1

z
pole in φ

by the + prescription as defined in Eq. (21). The total

dependence on the dimensional regulator µ cancels as ex-
pected, and the absence of a renormalization scale is due
to the absence of running coupling contributions in the
impact factor at this order. In the final expressions, φ6

terms are evaluated by replacing µ by µF in Ref. [22].
The sum of the double dipole contributions with the

contribution (18) from the BK-JIMWLK evolution of the
dipole operator is finite and reads

Φ+
2 = −

xx̄
(

p+γ
)2
(

(x~pV − ~p1)
2
+ (x̄~pV − ~p2)

2 − ~p 2
3 + 2xx̄Q2

)

(

(x~pV − ~p1)
2
+ xx̄Q2

)(

(x̄~pV − ~p2)
2
+ xx̄Q2

)

− xx̄~p 2
3 Q

2

× ln
( xx̄

e2η

)

ln





(

(x~pV − ~p1)
2 + xx̄Q2

)(

(x̄~pV − ~p2)
2 + xx̄Q2

)

xx̄~p 2
3 Q2



 (27)

−
4xx̄

(

p+γ
)2

(x~pV − ~p1)
2 + xx̄Q2

ln
( x̄

eη

)

ln

(

~p 2
3

Q2

)

+

(

p+γ
)2

2xx̄

∫ x

0

dz [(φ5)LL + (φ6)LL]+ + (x ↔ x̄, ~p1 ↔ ~p2)
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for a longitudinal photon, and

Φβ
2⊥ (x) = p+γ (xp

β
V ⊥ − pβ1⊥) (x̄− x)

( −2

(x~pV − ~p1)2 + xx̄Q2
ln

(

~p 2
3

Q2

)

ln
( x̄

eη

)

(28)

+ ln
( xx̄

e2η

)









1

(x~pV − ~p1)2
ln

(

(x~pV − ~p1)
2 + xx̄Q2

xx̄Q2

)

−

(

(x̄~pV − ~p2)
2 + xx̄Q2

)

ln

(

((x~pV −~p1)
2+xx̄Q2)((x̄~pV −~p2)

2+xx̄Q2)
xx̄~p 2

3
Q2

)

((x~pV − ~p1)2 + xx̄Q2) ((x̄~pV − ~p2)2 + xx̄Q2)− xx̄~p 2
3 Q2

















+
p+γ
2xx̄

∫ x

0

dz
[

(φ5)
β
TL + (φ6)

β
TL

]

+
+ (x ↔ x̄, ~p1 ↔ ~p2)

for a transverse photon.
Discussion. An explicit check shows that Eqs. (26,

28) are still valid in the Q2 = 0 (photoproduction) limit
despite the presence of lnQ2 terms since they cancel one
another.
None of the results in the present Letter contains end-

point singularities (x → 0 or 1), even in the photoproduc-
tion limit: the presence of non-zero transverse momenta
in t−channel allows one to regularize such singularities.
The remaining dependence of the amplitude on the

factorization and renormalization scales µF and µR and
on the arbitrary parameter s0 is only of next-to-next-to-
leading logarithmic orders.
Our results were obtained for arbitrary kinematics, in

the shockwave approach. It would be interesting to com-
pare them (in the linear limit for the double dipole con-
tribution) with the result of Ref. [42], which was obtained
with forward kinematics and for a longitudinally polar-
ized photon, in the usual kt−factorization framework of
linear BFKL. Still, a detailed comparison is not straight-
forward since the distribution of radiative corrections be-
tween the kernel and the impact factor is different in BK
and in BFKL frameworks [43]. Nontrivial kernel and im-
pact factor transformations are required for such a com-
parison, which is left for further studies [34].
Conclusion. In this Letter, we have obtained for the

first time the complete NLO impact factor for the γ
(∗)
L,T →

VL transitions in the shockwave framework.
The present result, when combined with solutions to

the NLO BK-JIMWLK evolution and to the leading twist
NLO ERBL equation, allows for the very first complete
NLO study of exclusive meson production at asymptotic
energies with the inclusion of saturation effects.
It paves the way for precision studies of small-x

QCD and saturation physics of nucleon and nuclei with
a diverse range of phenomenological applications for
present and future colliders.
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