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Abstract. The CLAS and Hall A collaborations at Jefferson Laboratory have recently released new results
for the ep → epγ reaction. We analyze these new data within the Generalized Parton Distribution formal-
ism. Employing a fitter algorithm introduced and used in earlier works, we are able to extract from these
data new constraints on the kinematical dependence of three Compton Form Factors. Based on experimen-
tal data, we subsequently extract the dependence of the proton charge radius on the quarks’ longitudinal
momentum fraction.

PACS. XX.XX.XX No PACS code given

1 Introduction

The past two decades have seen an important progress in
the research field of nucleon structure with the emergence
of the Generalized Parton Distribution (GPDs) formal-
ism and its associated experimental program. The GPDs
are the structure functions of the nucleon (and of hadrons,
more generally) which are accessed in the deeply exclusive
leptoproduction of a photon or a meson. They parametrize
the complex non-perturbative QCD (Quantum Chromo-
dynamics) partonic dynamics and structure of the nu-
cleon. In particular, in the light-front frame, where the nu-
cleon is moving with large momentum, GPDs give access
concurrently to the spatial distribution of charges in the
plane perpendicular to the average nucleon momentum di-
rection, and to the longitudinal momentum distribution of
the partons in the nucleon. The correlation between these
two distributions is presently still largely unknown. As a
result of these position-momentum interrelations, GPDs
also provide a way to measure the unknown orbital mo-
mentum contribution of quarks to the total spin of the
nucleon through Ji’s sum rule [1]. We refer the reader to
Refs. [1,2,3,4] for the original articles on GPDs and to
Refs. [5,6,7,8,9,10,11] for reviews of the field.

GPDs are most directly accessible in Deeply Virtual
Compton Scattering (DVCS). In this process, an incom-
ing virtual photon, emitted by a high-energy lepton beam,
hits a quark of the nucleon which radiates a final real
photon (Fig. 1-left). We consider here and in the follow-
ing an electron beam and a proton target and we denote
by e, p and γ∗ (e′, p′, and γ) the four-vectors of the ini-
tial state (final state) electron, proton and photon respec-

tively. QCD states that in this process there is a factor-
ization between the elementary photon-quark Compton
scattering, which is precisely calculable in perturbative
QCD, and the GPDs, which encode the complex unknown
non-perturbative dynamics of the quarks in the nucleon.
This factorization has been shown to hold for sufficiently
large Q2 = (e − e′)2, the squared momentum transfer be-
tween the final and initial leptons, and sufficiently small
t = (p−p′)2 = (γ∗−γ′)2, the squared momentum transfer
between the final and initial protons (or photons).

In the QCD leading-twist framework, in which this
work is placed, there are four quark helicity-conserving
GPDs, H , E, H̃ and Ẽ, parametrizing the DVCS process.
This reflects the four independent helicity-spin transitions
between the initial and final quark-nucleon systems. The
way to disentangle the contributions of the four GPDs is
to measure unpolarized cross sections and different spin
observables for the ep → epγ reaction. This can be done
by the use of polarized beam, polarized target, or a com-
bination of both.

Over the past few years, the CLAS and Hall A col-
laborations at Jefferson Lab (JLab), using a ≈ 5.75 GeV
electron beam, have released new results for four observ-
ables of the ep → epγ reaction: unpolarized cross sec-
tions and difference of beam-polarized cross sections by
the Hall A [12] and CLAS [13] experiments, as well as
single and double target-spin asymmetries with longitudi-
nally polarized target and polarized beam by the CLAS
experiment [14,15].

In this article, we analyze these data and extract new
constraints on GPDs. Furthermore, based on DVCS data,
we will extract the longitudinal momentum dependence
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Fig. 1. Left: the DVCS process (there is also a crossed diagram where the final state photon is emitted from the initial quark).
Right: the BH process (there is also the process where the final state photon is emitted from the initial electron). The various
variables and quantities are defined in the text.

(x-dependence) of the radius of the transverse charge dis-
tribution in a proton. The present article details and ex-
tends our earlier work published in Ref. [16], where the
specifics of the techniques used to extract the GPD infor-
mation from the experimental data were not presented.
Furthermore, we extend the analysis of Ref. [16], where
results were presented for one GPD observable, to three
GPD observables in the present work. In particular, we
demonstrate the constraints between real and imaginary
parts of the observables involving the GPD H within a
dispersive framework.

The outline of this paper is as follows. Section 2 of this
article is devoted to a very concise review of earlier works
on the GPD formalism and on the fitting technique that
we use to extract the GPD information from DVCS data.
Section 3 details some of the numerous Monte-Carlo stud-
ies that were carried out to demonstrate the reliability of
the fitting procedure. In Section 4, we apply the method to
the Hall A and CLAS data and extract three (out of eight)
Compton form factors, which parametrize the DVCS pro-
cess at leading twist. In Section 5, we provide a physical
interpretation of the extracted observables. In particular,
we discuss the longitudinal momentum dependence of the
transverse charge densities in a proton, and show the con-
straints imposed within a dispersive framework. Finally,
we present our conclusions in Section 6.

2 GPD formalism and fitting technique in

brief

The GPDs are functions of three variables: x, ξ and t
(Fig. 1-left), where x+ ξ (x− ξ) represents the longitudi-

nal momentum fraction of the initial (final) quark w.r.t.
the average nucleon momentum [1], and t is the conjugate
variable of the localization of the quark in the transverse
position space (impact parameter) [17,18,19]. Thus, an
intuitive interpretation of GPDs is that they describe the
amplitude of hitting a quark in the nucleon with momen-
tum fraction x + ξ and putting it back with a different
moment fraction x− ξ at a given transverse distance, rel-
ative to the transverse center of mass, in the nucleon.

As we are considering the DVCS process on a proton
target in this work, all GPDs in the following stand for
the quark flavor combination:H(x, ξ, t) = 4/9Hu(x, ξ, t)+
1/9Hd(x, ξ, t)+ 1/9Hs(x, ξ, t), and similarly for the other
GPDs.

One major difficulty in the study of GPDs is that they
appear in the DVCS amplitude as integrals over x. This is
due to the loop in the DVCS diagram of Fig. 1-left, which
generates convolution terms of the form:

∫ +1

−1

dx
GPD(x, ξ, t)

x− ξ + iǫ
+ ..., (1)

where the denominator arises from the quark propagator.
Using the residue theorem, the following 8 real quantities,
hereafter referred to as Compton Form Factors (CFFs) 1,
are directly accessible via DVCS measurements:

1 We point out that the original definition of CFFs is slightly
different. For instance in Ref. [26] they are complex quantities,
while, for convenience, we use real quantities in this work.
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HRe(ξ, t) ≡ P

∫ 1

0

dxH+(x, ξ, t)C
+(x, ξ), (2)

ERe(ξ, t) ≡ P

∫ 1

0

dxE+(x, ξ, t)C
+(x, ξ), (3)

H̃Re(ξ, t) ≡ P

∫ 1

0

dxH̃+(x, ξ, t)C
−(x, ξ), (4)

ẼRe(ξ, t) ≡ P

∫ 1

0

dxẼ+(x, ξ, t)C
−(x, ξ), (5)

HIm(ξ, t) ≡ H+(ξ, ξ, t), (6)

EIm(ξ, t) ≡ E+(ξ, ξ, t), (7)

H̃Im(ξ, t) ≡ H̃+(ξ, ξ, t), (8)

ẼIm(ξ, t) ≡ Ẽ+(ξ, ξ, t), (9)

where the coefficient functions C± are defined as:

C±(x, ξ) =
1

x− ξ
±

1

x+ ξ
, (10)

and P denotes the principal value integral. The subscript
”+” on the GPDs denotes their singlet (quark plus anti-
quark) combinations:

H+(x, ξ, t) ≡ H(x, ξ, t)−H(−x, ξ, t), (11)

E+(x, ξ, t) ≡ E(x, ξ, t) − E(−x, ξ, t), (12)

H̃+(x, ξ, t) ≡ H̃(x, ξ, t) + H̃(−x, ξ, t), (13)

Ẽ+(x, ξ, t) ≡ Ẽ(x, ξ, t) + Ẽ(−x, ξ, t), (14)

Thus, the maximum model-independent information
which can be extracted from the ep → epγ reaction at
leading twist are 8 CFFs, which depend on two variables,
ξ and t, at QCD leading order. There is an additional
Q2-dependence in the CFFs (and in the GPDs) if QCD
evolution is taken into account. Given the small Q2 ranges
dealt with in this work and that the Q2-evolution is in
principle calculable (see Ref. [20] for a recent review), we
will not consider it in the following.

Kinematically, the ep → e′p′γ reaction depends, for a
given electron beam energy, on four independent variables.
The most appropriate ones for a GPD analysis are: ξ, t,
Q2 and φ. We already defined Q2 and t. The variable ξ is
related to the standard xB variable from inclusive Deep
Inelastic Scattering:

ξ =
xB

2− xB

, (15)

with xB = Q2

2mp(Ee−E
e′
) , where mp is the proton mass,

Ee the incident beam energy, and Ee′ the scattered elec-
tron energy. The angle φ is the azimuthal angle between
the electron scattering plane and the hadronic production
plane.

A further complexity in studying GPDs via DVCS is
that there is an additional significant mechanism con-
tributing to the epγ final state, the Bethe-Heitler (BH)

process. In this process (Fig. 1-right) the final state pho-
ton is radiated by the incoming or scattered electron, and
not by a quark of the nucleon. The BH and DVCS mech-
anisms interfere at the amplitude level. However, the BH
amplitude is precisely calculable theoretically. The only
non-QED inputs in the calculation are the nucleon elastic
form factors F1(t) and F2(t) and these are well known at
the small momentum transfers t considered in this work.
Consequently, the only unknown theoretical quantities en-
tering the computation of the ep → epγ observables are
therefore the eight CFFs.

In Refs. [21,22,23,24,25], we proposed and applied a
method to extract CFFs in a quasi model-independent
way. It consists in taking the 8 CFFs as free parameters
and, knowing the well-established BH and DVCS leading-
twist amplitudes, to fit, at a fixed (xB , t) kinematics, si-
multaneously the φ-distributions of several ep → epγ ex-
perimental observables. If the range of variation of the
CFFs is limited, the dominant CFFs contributing to the
observables which are fitted are obtained from the fit pro-
cedure with finite error bars. These error bars are mainly
due to the correlations between the CFFs. Rather than
the error on the experimental data, they reflect the influ-
ence of the other subdominant CFFs, as we shall see in the
following. The approach of fitting CFFs at fixed (xB , t)
kinematics is called “local fitting”. Aside from the limits
imposed on the variation of the CFFs, which will be dis-
cussed in the following sections, it has the merit of being
mostly model-independent as there is no need to assume
and hypothesize any functional shape for the CFFs. The
method has also its drawbacks, in particular it only makes
use of the data available at a particular (xB , t) kinematics,
without exploiting potentially useful neighbouring data.
Nevertheless, with this local fitting method, in our earlier
works, we managed to derive limits and constraints for the
HIm, H̃Im and HRe CFFs, with an average 40% relative
uncertainty for HIm, at JLab [21,23] and HERMES [22,
24] kinematics.

In the following, we analyze with this fitting tech-
nique the new CLAS and Hall-A DVCS data. We will
denote the unpolarized cross sections, difference of beam-
polarized cross sections, longitudinally polarized target
single spin asymmetries and beam-longitudinally polar-
ized target double spin asymmetries, respectively, as σ,
∆σLU , AUL and ALL. The two indices refer respectively
to the polarization of the beam and of the target (U
for unpolarized and L for longitudinally polarized). The
Hall-A collaboration has measured the φ distribution of
σ and ∆σLU for 20 (xB , Q

2, t) bins in the phase space
0.34. xB . 0.40, 1.98 . Q2 . 2.36 GeV2, 0.15 . −t .
0.40 GeV2. The CLAS collaboration has measured the φ
distribution of σ and ∆σLU for more than 100 (xB , Q

2,
t) bins in the phase space 0.12 . xB . 0.50, 1.11. Q2 .
3.90 GeV2, 0.12 . −t . 0.45 GeV2, and the φ distribution
of AUL and ALL for 20 (xB, Q

2, t) bins in approximately
the same phase space.
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3 Monte-Carlo studies

We present in this section some examples of the simula-
tions that we have carried out in order to test and demon-
strate the reliability and robustness of our fitting method.
We consider the least constrained and most challenging
case, having at our disposal only two observables: the
unpolarized cross section σ and the difference of beam-
polarized cross sections∆σLU . Additional observables can
of course only improve the situation, as will be shown with
real data in the next section.

Each DVCS observable receives contributions from sev-
eral CFFs, which are strongly correlated. Thus, the extrac-
tion of 8 CFFs from only two observables, with finite ex-
perimental uncertainties, is an underconstrained problem.
However, some observables are dominated by and mostly
sensitive to one or two CFFs compared to the others. For
instance, it is well known [26] that ∆σLU is dominated by

the HIm CFF and that AUL is strongly sensitive to H̃Im.
Other CFFs contribute to these two observables, but they
are kinematically suppressed, all the more in comparison
to the experimental uncertainties. Therefore, in order to
progress from the unconstrained problem it was decided
to limit, in a conservative and educated way, the range of
variation of the CFFs, especially the sub-dominant ones.
While keeping the 8 CFFs in the fit, this effectively and
essentially reduces the problem to fitting the one or two
dominant CFFs to the one or two experimental observ-
ables. The influence of the sub-dominant CFFs, over the
domain in which they are allowed to vary, is then reflected
in the resulting uncertainty on the dominant CFFs ex-
tracted. The only model-dependent input in this approach
is the definition of the range of variation of the CFFs. We
illustrate and clarify the approach in the following sub-
sections.

3.1 Pseudo-data Generation

In a first stage, we generate, for a given (xB , Q
2, t) kine-

matic bin and a given beam energy, the unpolarized cross
sections and the difference of beam-polarized cross sec-
tions of the ep → epγ process as a function of φ, based
on the leading-twist and leading-order DVCS+BH ampli-
tude.

For our first example, we take the particular kine-
matics (xB , Q

2, t)=(0.126, 1.1114,−0.1078) with a 5.75-
GeV beam energy. This corresponds to a kinematic bin
measured by the CLAS experiment. We generate 24 φ
points like for the experimental data. Then, the only in-
puts needed to generate the cross sections are the 8 CFFs
entering the DVCS amplitude. We shall generate them
randomly. In order to keep the problem realistic, we pick
them in a bounded 8-fold hypervolume, whose limits are
defined as ±5 times the CFFs predicted by the VGG
model. VGG [5,28,29,30] is a well-known and widely used
GPD model which obeys most of the model-independent
GPD normalization constraints and which reproduces the
general trends of the existing DVCS data (see Refs. [13,
14,15] for instance). Centering the 8-CFF hypervolume

around the VGG model and limiting it to a ±5 factor
prevents the fitter from exploring too unlikely cases.

For obvious symmetry reasons due to this definition of
the 8-CFF hypervolume , it was chosen not to generate
the CFF values themselves but rather their “multipliers”,
i.e. their deviations from the VGG CFFs. In other words,
we generate 8 random numbers between -5 and +5. The
CFFs entering the DVCS amplitude are then the product
of these multipliers by the VGG reference CFFs. As an
illustration, for this first example, we list here the 8 ran-
domly generated CFFs multipliers that have been gener-
ated, which are denoted as a(CFF ):

a(HRe) = 3.191610 a(ERe) = 2.378950

a(H̃Re) = 3.167072 a(ẼRe) = 3.091025

a(HIm) = 3.124754 a(EIm) = −2.095427

a(H̃Im) = 1.641959 a(ẼIm) = −3.279582.

(16)

The CFFs used for the cross section calculations are
then the result of the product of these multipliers by the
VGG reference CFFs which are, at the (xB , Q

2, t)=(0.126,
1.1114 GeV2, -0.1078 GeV2) kinematics:

HRe = 3.30098 ERe = 2.69182

H̃Re = 0.116259 ẼRe = −263.284537

HIm = 5.09888 EIm = 1.01539

H̃Im = 0.590312 ẼIm = −263.28453.

(17)

Some of the multipliers in Eq. 16 are very far from 1.
They correspond probably to quite unrealistic CFFs. For
instance, a(HIm) = 3.124754 means that the generated
HIm CFF is more than 3 times the VGG value. Given that
GPDs have to fulfill a certain number of normalization
constraints [5,6,7,8,9,10,11], such a strong deviation from
the VGG reference value is quite unlikely. We consider
however that exploring and scanning such a large range
of values should make our case all the more robust and
convincing.

The goal of this study is to find out if, by fitting the
generated φ pseudo-data distribution, we are able to re-
trieve, or constrain, the 8 original randomly generated
CFFs multipliers, or at least some of them, under real-
istic experimental conditions. For the latter, we smear the
theoretically calculated cross sections according to the ex-
perimental uncertainties of the Hall A and CLAS experi-
ments. Figure 2 shows the φ dependence of the ep → epγ
unpolarized cross section and difference of beam-polarized
cross sections (top and bottom panels respectively), un-
smeared and smeared (left and right panels respectively),
generated with the 8 random CFFs multipliers of Eq. 16,
multiplied by the 8 VGG CFFs of Eq. 17.

In Fig. 2, the 24 φ points superimposed on the the-
oretical curves are equidistant. This corresponds approx-
imately to the φ binning of the experimental data. We
added on those points the error bars corresponding to the
published experimental uncertainties of the CLAS data.
For this particular bin, they range from ≈ 5% to ≈ 9%
for the unpolarized cross section and from ≈ 20% to more
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Fig. 2. Pseudo-data, generated from 8 randomly generated
CFFs (see Eqs. 16 and 17) for the kinematics (xB, Q2,
t)=(0.126, 1.1114 GeV2,−0.1078 GeV2) corresponding to one
bin measured by the CLAS experiment. The unpolarized cross
section (top) and the difference of beam-polarized cross sec-
tion (bottom) are shown unsmeared (left) and smeared (right).
The solid lines show the originally generated distribution. The
dashed line show the results of the fits (see text for details).

than 100% for the difference of beam-polarized cross sec-
tion. On the left panels of Fig. 2, the three lowest φ and
the three largest φ points have no error bar. This means
that these φ regions were actually not measured experi-
mentally, likely for detector acceptance issues. Thus, these
6 φ don’t appear on the right panels of Fig. 2, which are
meant to mimic real data with the use of smearing (we
however recall that the cross sections in Fig. 2 are not the
measured ones since they have been generated with ran-
dom CFFs here). The error bar values and the accessible
φ regions vary for each (xB , Q

2, t) bin, and differ for the
Hall-A and CLAS experiments.

The smearing of the points of the right part of Fig. 2
has been done via a Gaussian distribution, centered at the
theoretically computed value, with a standard deviation
corresponding to the experimental uncertainties (i.e. the
error bars of the points of the left part of the figure). Each
φ point was smeared independently of the other φ points.
The right part of Fig. 2 shows one particular instance of
such a series of smearings. In the following, we will carry
out our studies for several random smearings so that we
are not biased by one particular smearing. Under these
conditions, we deem that in the following we will perform
our fits in rather realistic conditions, taking into account
the φ-coverage of the data, their dispersion and their un-
certaintities.

3.2 Pseudo-data Fitting

The second stage of the study consists in fitting the gen-
erated φ distributions leaving the 8 CFFs as free param-
eters. This should be done, ideally, in “blind” conditions,
i.e. not making use of the knowledge of the originally gen-
erated CFF values. However, as was mentioned earlier, the
condition for the fitting procedure to converge is to limit
the hyperspace in which the 8 CFFs are allowed to vary.
The choice of the values of these boundaries is the only
model-dependent input in our approach. We take the same
hyperspace in which the 8 CFFs were originally generated,
i.e. ±5 times the VGG CFFs. Like for the generation of
the CFFs, we take as the free parameters of the fit, rather
than the absolute CFFs themselves, the relative deviations
from the reference VGG CFFs. We will therefore fit in the
following the multipliers of the VGG CFFs, with the goal
to recover the originally generated ones.

For the minimization we use the least squares method.
We minimize χ2, defined as follows:

χ2 =

n
∑

i=1

(σtheo
i − σdata

i )2

(δσexp
i )2

+
(∆σtheo

i −∆σdata
i )2

(δ(∆σdata
i ))2

(18)

In Eq. 18, σtheo (∆σtheo) is the theoretical DVCS+BH
cross section (difference of beam-polarized cross section),
which depend on the CFFs multipliers, which are the free
parameters of the fit. The quantities σdata, δσdata, and
∆σdata, δ∆σdata, are, respectively, the values and the un-
certainties of the pseudo- or experimental data. The index
i runs over all the available φ-points for a given (xB,Q

2,t)
bin. We use the well-knownMINUIT code from CERN [31]
with the MINOS option. With this option, MINUIT cal-
culates χ2 at multiple points of the multi-dimensional
hyperspace of the free parameters. Thus, step by step,
the full phase space of the free parameters is explored.
This method is costly in terms of computing power and
time but it allows, numerical precision and step-size is-
sues aside, to find the global minimum (or minima) of the
problem, reducing the risk of falling into local minima. In
parallel, it allows to determine the errors on the fitting
parameters. The 1-σ uncertainty on a given parameter
corresponds to the value of this parameter for ∆χ2 = +1
above χ2

min, the minimum χ2 value. When the problem is
not linear and when the χ2 shape is not a simple parabola
or a simple function, as in our case, this is the only way
to determine this error.

3.2.1 Non-smeared pseudo-data

We start from the simplest case: fitting the pseudo-data of
the left part of Fig. 2, σ and ∆σLU , without smearing. It
is important to make sure that the result of the fit is not
dependent on the particular starting values of the 8 CFFs.
Indeed, by selecting or favoring specific starting points in
the 8-dimensional CFF hypervolume, one can end up in a
particular local minimum. We therefore carried out the fits
several hundreds of times with arbitrary starting points,
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Fig. 3. Results of a series of fits, differing by their randomly
generated starting values, of the σ and ∆σLU pseudo-data of
the left part of Fig. 2, i.e. without smearing. The red dots
show for each fit, on the x-axis, the values of the CFFs mul-
tipliers which minimize the problem and, on the y-axis, the
corresponding χ2

min value. The blue bars indicate the 1-σ un-
certainty corresponding to χ2

min + 1. The non-finite error bars
observed for the CFFs other than HIm mean that the χ2

min+1
value lies out of the±5 times VGG CFF range. The red vertical
lines indicate the CFF-multiplier values used for the generation
of the pseudo-data (see Eq. 16).

randomly selected in the ±5 times VGG CFF hypervol-
ume. Figure 3 shows with the red dots the results of the
fits for the 8 CFFs (or rather their multipliers) as a func-
tion of χ2

min, for a random sample of hundreds of starting
points. The blue bars indicate the 1-σ uncertainty corre-
sponding to χ2

min+1. The χ2
min values of the fits are very

low, of the order of 10−5. We recall that in this first ex-
ercise no smearing was applied to the pseudo-data. Thus,
all the fits go exactly through the data points. Therefore,
the precise χ2

min values and their dispersion are not very
meaningful in this case (incidentally, note that the plot-
ted χ2

min values here are not normalized, i.e. they are not
divided by the number of degrees of freedom).

What is apparent in Fig. 3 is that, out of the eight
CFFs, only HIm emerges from the fit with a quite well-
nailed minimum and finite error bars (of the order of
≈20%). This happens systematically and invariably, which-
ever the starting point in the 8-dimensional CFF-multiplier
hypervolume. All HIm minima lie very closely to the orig-
inally generated a(HIm) = 3.124754 (see Eq. 16), which
is indicated by the vertical red line in Fig. 3. One can
also note that, in most cases, the error bars of a(HIm)
appear asymmetric. We will encounter such asymmetric
errors often in the following. This is the signature of a non-
parabolic χ2 profile and of a non-linear problem. This is
expected as CFFs contribute in a bilinear way to the un-
polarized cross section (although in a linear way to the
beam-polarized cross section) [26]. The non-finite error
bars observed for the other seven CFFs mean that the

χ2
min + 1 value lies out of the ±5 times VGG CFF range.

Some partial information can nevertheless be extracted for
HRe as, while the positive error bar is infinite, the negative
one appears to be finite. Also, the minimum χ2

min values
for HRe lie, with some dispersion, around the originally
generated value. This is not the case for the remaining six
CFFs which have both negative and positive error bars
non-finite, and for which the values of a() which minimize
the problem are essentially randomly distributed between
−5 and +5. There is in some cases a tendency for some of
these non-converging CFFs to have their multipliers clus-
tering near the edges of the allowed domain, i.e. −5 and
+5. We will come back to this point further down.

In summary, these first results show that σ and ∆σLU

are dominantly sensitive to the HIm and HRe CFFs and
that these two CFFs seem, in the present ideal (i.e. un-
smeared) conditions, to be recoverable, albeit only par-
tially for HRe, from the simultaneous fit of σ and ∆σLU .

3.2.2 Smeared pseudo-data

Figure 4 shows the result of the same kind of study on
smeared pseudo-data, such as those in the right part of
Fig. 2. For this particular smearing of the data, we also
performed the fits with many starting points in the 8-
dimensional CFF hypervolume. Fig. 4 shows that all fits
led to the same set of 8 CFFs solution. Indeed, compared
to Fig. 3, there is here no dispersion of the solutions for the
non-dominant CFFs. We tend to attribute the dispersion
of the solutions that was observed in Fig. 3 to the very
low χ2

min values, which were, we recall, of the order of
10−5. Such low values reflect the ill-nature of the problem
of fitting data points which are not smeared. Then χ2

min

values, at the limit of the numerical precision of the mini-
mizing algorithms, have little significance. In Fig. 4, which
correspond to fits of smeared data, the unnormalized-χ2

values are indeed now of the order of 25. This is consistent
with the observation that there are 30 data points which
are fitted in the right part of Fig. 2. In this latter figure,
the dashed curves on the smeared data (right part of the
figure) actually show the results of the fits with the values
of the 8 CFFs multipliers extracted from Fig. 4.

Regarding the results for theHIm andHRe CFFs, from
Fig. 4 we reach conclusions which are almost similar to the
previous case, with the unsmeared pseudo-data. Namely,
all the fits, independently of their starting values, allow
to recover the originally generated value of HIm (at the
≈ 20% level) and partially that of HRe, with its finite
negative error bar. For most of the other (non-dominant)
CFFs, the fits find values on the edge of the allowed CFF
range, i.e. ± 5. We will come back to this point further
down.

A closer look at Fig. 4 reveals that the values of a(HIm)
and a(HRe) corresponding to χ2

min (red points in Fig. 4)
are not exactly centered on the originally generated values
(red lines). In particular, a(HRe), is clearly shifted to the
right compared to the generated value (which nevertheless
lies well within the negative blue error bar). The origin of
such shift is the particular smearing of the data that we
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Fig. 4. Results of a series of fits, differing by their randomly
generated starting values, of the σ and ∆σLU pseudo-data of
the right part of Fig. 2, i.e. with smearing. The figure shows, for
each fit, on the x-axis the values of the CFFs multipliers which
minimize the problem, and on the y-axis the corresponding
χ2
min value. The red vertical lines indicate the CFF-multiplier

values used for the generation of the pseudo-data (see Eq. 16).

introduced and can accidentally bias the φ distributions
in a given direction (overall decrease or increase of the φ
distributions).

Indeed, the smearing of the data that we adopted in
Fig. 2 was a particular random one. It has to be checked
for other smearings that our fit procedure is also able to
recover well the HIm CFF (in particular), from the si-
multaneous fit of σ and ∆σLU , in order to confirm the ro-
bustness of the method. Figure 5 shows, still for the CLAS
kinematics (xB , Q

2, t)=(0.126, 1.1114,−0.1078), a sample
of fit results for various smearings of the φ distributions
and different generated CFF values. Each column corre-
sponds to a different smearing, the first column having
no smearing, and each row to a different set of generated
CFF multipliers for a(HIm).

The abscissa represents different“trials”, i.e. different
randomly generated starting points. We plot in the figure
only a small sample for sake of visibility.

Among the hundreds of different smearings and CFFs
choices, we chose the nine particular cases of Fig. 5 as
they illustrate different typical situations. Fig. 5 shows
the ideal no-smearing case on the left column, one recog-
nizes the small dispersion of the fitted a(HIm)’s, which
lie close to the originally generated ones. This generalizes
what we observed in Fig. 3. Every single fit, differing only
by its starting values, leads to a slightly different solution,
always close to the originally generated value (with a χ2

min

value of the order of 10−5, not shown in Fig. 5). It is re-
markable that even though the solutions slightly vary be-
tween trials, the range defined by the positive and negative
error bars always remains the same. In other words, even
if the χ2

min value happen to fluctuate, the χ2
min + 1 val-

ues seem to be well delineated. As illustrated by the three
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Fig. 5. The result of several fits for a(HIm), differing by their
randomly generated starting values (“trial”). The results are
shown for a selection of three different random sets of gener-
ated CFFs (rows) and, for each of these, three different random
smearings of the pseudo-data (columns). The original value
of the CFF multiplier is marked by the red line. The point
indicated by the “hand” shows the final unique solution ac-
cording to the prescription that we advocate and describe in
Section 3.2.3: taking the largest error bars of all solutions and
their middle as most probable value.

rows of the first column of the figure, this is in general the
case independently of the originally generated a(HIm), be
it positive or negative, close to 0 or not.

The next two columns of Fig. 5 illustrate the solutions
that one typically finds for non-zero smearings. Like we no-
ticed and discussed with Fig. 4, when smearing is involved,
there is quite less dispersion of the solutions. All trials,
only differing by their starting points, converge in general
to one or a couple of stable values, which have very simi-
lar χ2

min values (of the order of 25, like in Fig. 4). In par-
ticular, in the right-column/central-row plot, one clearly
distinguishes two values of a(HIm) which minimize the
problem and which are attained depending on the starting
values of the fit parameters. There is almost no difference
in the χmin between the two solutions: the a(HIm) ≈ 0.96
solution has χ2

min ≈ 27.14 while the a(HIm) ≈ 0.77 solu-
tion has χ2

min ≈ 27.46. As a matter of fact, the solution
that has the slightly larger χ2

min value is the one which
has the fittedHIm value the closest to the originally gener-
ated one (a(HIm) = 0.761933 in this particular case). The
range of the error bars of the two solutions is very similar,
although the negative error bar appears slightly larger for
one solution than for the other. In general, be it for single
or multiple solutions cases, the error bars are very similar
from one trial to the other. Again, even though the χ2

min
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value might not be unique and well defined, the χ2
min + 1

values appear to be rather well specified.
In all plots of Fig. 5, the red horizontal line indicates

the originally generated a(HIm) value. It is remarkable
that it is always contained in the largest error bars of the
fitted values. It is admittedly at the very edge for the top
right plot; among our hundreds of smearings, we selected
this particular one, which is not at all a general case, as
an illustration of an “extreme” case.
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Fig. 6. Results of the fitted a(HIm)’s and a(H̃Im)’s for the
same fits as in Fig. 5. Each square corresponds to a fit with
different starting values. The red lines indicate the originally
generated values. The error bars of H̃ are not shown, as they
are all infinite (i.e. they extend beyond the ±5 range) and
would clutter the plot too much.

One can better understand some of these behaviors by
examining Fig. 6. For the same nine conditions of Fig. 5,
the figure shows to which a(H̃Im) value the a(HIm) so-
lution corresponds to. We consider this correlation since
H̃Im is expected to be the next dominant contributor to
∆σLU after HIm [26]. The upper left plot of Fig. 6 shows
that the apparently randomly distributed a(HIm) solu-
tions around the originally generated value of the upper
left plot of Fig. 5 actually correspond each to a different
value of a(H̃Im), all distributed along the whole allowed

± 5 range (error bars on H̃ extend beyond the ±5 range
and only the central values are plotted in Fig. 6). It re-
veals (confirms) the strong correlation between these two
CFFs. Depending on the starting point, the fitter code
ends up in (a(HIm), a(H̃Im)) correlated solutions. One

notices that while H̃Im is not constrained at all within
the ±5 range, HIm is always contained in a very limited
range. This latter range is defined by the χ2

min + 1 error

bar, whose projection is displayed in Fig. 5. We actually
see that what determines the error bar on HIm is the
range of variation allowed for H̃Im (this effect was stud-

ied in detail in Ref. [25]). Were H̃Im allowed to vary in a
domain larger than ±5 times the VGG CFF hyperspace,
the error bar on HIm would be bigger (and conversely).
This is why the error bars on HIm that we obtained so far
are in general of the order of 20 to 30% (see Fig. 5), i.e.
somewhat larger than the experimental precision of the
data. Once again, this is because they reflect the influence
of the other CFFs (mostly H̃Im in the present case) and
their correlation with HIm. Therefore, the value of HIm

will be better determined by having some extra constraint
on H̃Im such as additional observables.

When smearing is introduced (second and third columns
of Figs. 5 and 6) the well-defined single or double a(HIm)
values correspond to, also, well-defined single or double
values for a(H̃Im). In several cases, these a(H̃Im) values
are actually on the edge of the allowed phase space, i.e.
±5. In particular, the double solution for a(HIm) that
is found for the right-column/central-row plot of Figs. 4

and 5 corresponds to two extreme values for a(H̃Im), i.e.
±5. They are anyway far from the originally generated
values (indicated by the horizontal red lines in Fig. 6),
and have infinite error bars. Still, this does not prevent
the fitting code from finding the right solution for HIm.

3.2.3 Prescription for central value and error bars

Figure 7 shows another test of our fitting procedure. The
study is done this time for a kinematics measured in Hall
A: (xB , Q

2, t)=(0.375,1.964 GeV2,-0.278 GeV2). As be-
fore, we generate φ distributions from several random sets
of 8 CFFs, smear the distributions according to Gaus-
sians with standard deviations corresponding to the ex-
perimental Hall A data uncertainties, and fit them, tak-
ing randomly chosen starting points in the ±5 times the
VGG-CFFs hypervolume. Figure 7 illustrates with nine
plots, taken out of hundreds, the results for the recon-
structed a(HIm) CFF as a function of the unnormalized
χ2. The vertical red lines indicate the originally generated
a(HIm) values. For a given set of 8 CFFs, each fit yields
a different solution and different χ2

min values. This is due
to the random starting point and to the random smear-
ing of the cross sections, which are both different for each
fit. These two individual effects can be seen separately in
Fig. 5. Figure 7 mixes the two effects and shows them for
more cases. What is remarkable in Fig. 7 is that for all
fits, whatever the set of 8 CFFs, the smearing of the φ
points and the starting values of the CFFs, the originally
generated a(HIm) value always lies within the error bars
of the fitted a(HIm)’s.

When we fit real data, and extract HIm in particular,
the only feature that we can change in our fit procedure
is the starting point of the fit, the smearing of the data
being imposed by the experiment. We saw in Fig. 5 that,
in some cases, the solution a(HIm) corresponding to χ2

min,
was not unique: there could be “double” (or a few more)
solutions or “single” solutions but with fluctuations. In
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Fig. 7. Results of the fitter code, with the 8 CFFs taken as
free parameters, for a(HIm) as a function of χ2

min. The nine
plots correspond to nine randomly generated values of 8 CFFs
in the ±5 times VGG CFFs hyperspace. The red lines indicate
the originally randomly generated a(HIm) values. The black
points with their error bars indicate the results of the fitter
code. The (xB, Q

2, t) kinematics at which this study was done
is (0.375,1.964 GeV2, -0.278 GeV2), one of those measured by
the Hall A. In each case, we show, in order not to overcrowd the
figure, ≈ 20 fit results, out of hundreds. For each fit, both the
initial parameters and the smearing on the data are different.

many cases, the multiple solutions obtained are apart by
insignificant χ2 differences, as we saw, and the χ2

min solu-
tion cannot be clearly determined. The starting point can
also have an influence on the error bar of the solution: al-
though error bars ranges are almost always the same, one
can distinguish in Fig. 5 in some cases small differences
between error bars. It is not satisfactory to have several
solutions for a fit and we have to devise a way to define a
final, unique and reliable result, which should not depend
on the particular starting values and which should always
contain the “true” (generated) solution.

It seems that a good and conservative ad-hoc prescrip-
tion is to take, among our series of solutions, the range
between the maximum value of all error bars and the min-
imum value of all error bars in order to define an effective
error bar and take as the most probable value the mid-
dle of this interval. This recipe is indicated, in Fig. 5, by
the hand symbol, where the most probable value accord-
ing to our prescription is the empty square. This “middle
value” that we advocate does not in general correspond
to any of the χ2

min values of the fit. However, we saw for
example in Fig. 5 that the χ2

min values are actually not
corresponding to the originally generated value. The latter
lies within the error bars of the χ2

min solution. The χ2
min

values are thus not a better guess of the “true” value than
the “middle” value we propose. Since the smearing of the
data (on which we have obviously no control when deal-
ing with true experimental data) can shift the fitted HIm

above or under the “true” HIm, taking the middle point
of the biggest error bars as the most probable value pro-
vides an improved evaluation of the true value. Also, we
saw that in most instances we obtained asymmetric error
bars. These asymmetric error bars are typically defined
by extreme (edge) values of the subdominant CFFs. For

instance, one can see H̃Im in the top right plot of Fig. 6.
These subdominant CFFs are in general not constrained,
i.e. they are only restrained by the domain over which
they are allowed to vary in the fit (i.e. ± 5 times the VGG
CFFs). Thus, the χ2

min solution corresponding to such an
extreme value for these unconstrained CFF is actually not
significantly more probable than any other. Choosing the
central value of the error bars for HIm corresponds to set-
ting H̃Im, and, more generally, the unconstrained CFFs,
around 0. This seems a reasonable choice, especially when
these latter tend to lie at the edges of our fitting range.
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Fig. 8. Solid line: difference between the “middle value” calcu-
lated from the largest error bars of all solutions and the gener-
ated value. Dashed line: difference between the χ2

min solution
and the generated value.

Figure 8 justifies this prescription. The solid-line dis-
tribution shows, for thousands of events like in Fig. 7, i.e.
mixing randomly smearings and starting values, the dif-
ference between the “middle value” calculated from the
largest error bars of all solutions and the generated value.
As a comparison, the dashed-line distribution shows the
difference between the χ2

min solution and the generated
value. Both distributions are well-centered around 0, which
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shows that both solutions are meaningful. However, it is
clear that the “middle value” distribution is significantly
narrower than the χ2

min one.
To summarize this sub-section, we carried out our sim-

ulation studies for hundreds of cases, mixing sets of 8
CFFs, different starting points and cross section smearings
and different JLab-type kinematics. The cross-examination
of all these cases made us reach the general conclusion
that in a 8-CFFs fit of the σ and ∆σLU observables, us-
ing realistic experimental precisions, albeit largely under-
constrained our fitter code appears to always manage to
recover the originally generated HIm, as the “true” gen-
erated solution always lies in the χ2

min+1 error bar of the
fitted solution. Obviously we could not explore every com-
bination of starting points, generated sets of 8 CFFs and
cross sections smearings, and we cannot exclude the pos-
sibility that there are exceptions to this conclusion which
escaped our scrutiny. We feel nevertheless rather confi-
dent that our procedure is reliable and robust. We finally
advocate that, since there are cases where it is difficult
to define exclusively the χ2

min solution and therefore the
χ2
min + 1 value, it is the most appropriate to take as final

and unique solution the largest error bar solution and the
associated “middle” point, as illustrated in Fig. 5.

3.3 Fitting with four CFFs

We conclude this section on Monte-Carlo studies by a last
exercise. Since the GPDs H and, to a lesser extent, H̃ , are
the dominant contributors to σ and ∆σLU , an idea is to
investigate the outcome of a fit with only these two GPDs,
i.e. only 4 CFFs as free parameters. This effectively means
setting the 4 CFFs EIm, ERe, ẼIm and ẼRe to 0 in the fit,
while they are not null in the generation of the distribu-
tions to be fitted. This technique had been adopted previ-
ously to extract information on the kinematic dependence
of HIm and HRe in Ref. [13]. We used the same series of
simulated φ distributions as before, generated by 8 CFFs
taken randomly in the ±5-times-VGG CFFs hyperspace,
and smeared according to the experimental uncertainties.
For the present simulation, we use the same kinematics as
in Fig. 7, i.e. the Hall A kinematics (xB , Q

2, t)=(0.375,
1.964 GeV2, -0.278 GeV2), with its associated experimen-
tal uncertainties on the cross sections. This time, we fit the
smeared φ distributions by only the 4 CFFs HIm, HRe,
H̃Im and H̃Re, instead of the 8 CFFs as before.

The results for a(HIm) are displayed in Fig. 9, which
is the analog for 4 CFFs of Fig. 7. We first observe that
the error bars on the fitted a(HIm)’s are in general smaller
than for the 8-parameters case. This decrease of the error
bars can be simply understood as there are less free param-
eters (4 instead of 8) entering the problem and therefore
less correlations. However, we now observe several types
of results. For the left top-row plot, the central mid-row
plot and the bottom mid-row plot, the results of the fits
can be considered satisfactory as the squares lie relatively
well along the red lines, which indicate the originally gen-
erated values. However, we also observe cases where the
solutions are clearly systematically shifted, by 30 to 50%

w.r.t. the red lines. Although the fitted solutions are al-
ways relatively “close” to the true solutions, the latter are
quite often outside the error bar of the former, defined as
usual by χ2

min + 1. We shall therefore conclude that the

4-CFFs free-parameters fit based on the H and H̃ GPDs
is not fully reliable. At best, it can provide a flavor for the
solution at the 30 to 50% level, i.e. the relative shifts be-
tween the fitted solutions and the generated one. This 30
to 50% relative uncertainty will however not be reflected
in the error bars coming out of the fitter, which are much
smaller.
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Fig. 9. Results of the fitter code for a(HIm) as a function of χ2,
with only the 4 CFFs HIm, HRe, H̃Im and H̃Re as free param-
eters. The nine plots correspond to nine randomly generated
values of 8 CFFs in the ±5 times VGG CFFs hyperspace. The
red lines indicate the originally randomly generated a(HIm)
values. The squares with their error bars indicate the results
of the fitter code for a sample of ≈ 20 fits, each fit differing by
its starting values and smearings.

We also studied the case of fitting σ and ∆σLU with
the 4 CFFs HIm, HRe, H̃Im and H̃Re as free parameters
and EIm, ERe, ẼIm and ẼRe set to their original values
(as before, randomly generated), instead of 0 as in the
previous case. For the same randomly generated sets of
CFFs as before, Fig. 10 shows the results for a(HIm) in
this configuration. We observe that in general we are able,
within error bars, to recover the originally generated val-
ues for HIm (while the three other CFFs don’t come out
in general with finite error bars, both the positive and the
negative one). This means that, if the unfitted CFFs are
set to their true values, a fit with only the 4 CFFs based
on the H and H̃ GPDs might be meaningful (at least for
HIm). With the (strong) assumption that VGG (or, more
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generally, any other model) gives a reasonable description

of the E and Ẽ GPDs, this gives a motivation to fit real
data with only HIm, HRe, H̃Im and H̃Re as free param-
eters and setting EIm, ERe, ẼIm and ẼRe to their VGG
values. The merit of this 4 CFF fit approach is that this
provides smaller error bars. This is however clearly at the
price of introducing some model dependence since, in the
most general case, a 4-CFFs fit is not fully reliable as seen
earlier.
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Fig. 10. Results of the fitter code for a(HIm) as a function of
χ2, with the 4 CFFs HIm, HRe, H̃Im and H̃Re taken as free
parameters and EIm, ERe, ẼIm and ẼRe set to their originally
generated values. The nine plots correspond to nine randomly
generated values of 8 CFFs in the ±5 times VGG CFFs hyper-
space. The red lines indicate the originally randomly generated
a(HIm) values. The black points with their error bars indicate
the results of the fitter code for a sample of ≈ 20 fits, each fit
differing by its starting values.

4 Real Data Fitting

Being convinced of the soundness and reliability of our
fitting approach after our Monte-Carlo pseudo-data tests,
we now apply our method to real data. The JLab Hall A
and CLAS collaborations have recently released new sets
of unpolarized and beam-polarized cross sections (σ and
∆σLU ) [12,13]. At the light of the simulations of the pre-
vious section, we therefore expect to extract constraints
on the HIm CFF and, partially, on HRe. In addition,
the CLAS collaboration has measured, using a longitu-
dinally polarized target, the single and double target-spin
asymmetries AUL and ALL [15,14]. The H̃Im CFF being

a strong contributor to AUL, we expect to extract con-
straints on this CFF as well. The analysis of AUL will also
allow to improve the precision on HIm due to its strong
correlation with H̃Im, as we saw in the previous section.

We start our study with the Hall A data and then
proceed with the CLAS data.

4.1 Hall A data

The JLab Hall-A collaboration has measured the two ob-
servables σ and ∆σLU at four average kinematical settings
(xB, Q

2): (0.36, 1.90 GeV2), (0.36, 2.3 GeV2), (0.39, 2.06
GeV2) and (0.34, 2.17 GeV2). In Ref. [12] they are called
KIN2, KIN3, KINX2 and KINX3, respectively. The lat-
ter two kinematics are actually a subset, obtained with
tighter cuts, of the first two. For each of these four (xB ,
Q2) kinematics, the φ distribution has been measured for
five t bins.

We fit simultaneously the σ and ∆σLU φ-distributions,
for each of these 20 (xB , Q

2, t) bins. We use either the
eight CFFs as free parameters or only the four HIm, HRe,
H̃Im and H̃Re, the other CFFs being set to their VGG val-
ues, as invoked in the previous section. We carry out our
fits with hundreds of different starting values randomly
generated in the ±5-times-VGG-CFF hyperspace, in or-
der to make sure that the results are stable, as discussed
previously.

Analogously to Fig. 4, Fig. 11 shows an example of
the 8-CFFs fit results for one of the 20 (xB , Q

2, t) bins,
namely the third t-bin of the KIN2 kinematics: (xB , Q

2,
t)=(0.375, 1.964 GeV2, -0.278 GeV2). The figure shows
the result of the fit, for 50 different starting points, for
the 8 CFF multipliers with the associated χ2

min values.
The red points indicate the minimum χ2

min solutions and
the blue bars the errors corresponding to χ2

min + 1.
We observe that all trials end up with essentially the

same set of solutions, all with very similar χ2
min values.

The χ2
min values in Fig. 11 range from 50.3553 to 50.3587.

These χ2 values are unnormalized. For normalized values,
one has to divide by 48 (corresponding to the number of
data points: 24 for σ and 24 for ∆σLU ) minus 8 (corre-
sponding to the number of free parameters), i.e. 40.

Taking the solution which yields the minimum of all
χ2
min’s, i.e. 50.3553, the results of the 8 fitted CFF multi-

pliers are:

a(HIm) = 0.893220.065256−0.90729, a(EIm) = −1.3109∞∞,

a(H̃Im) = −0.68653∞−1.8512, a(ẼIm) = −0.352433.9312−1.5984,

a(HRe) = 5.0000∞−1.4469, a(ERe) = 5.0∞∞,

a(H̃Re) = −3.69190.94013∞ , a(ẼRe) = −0.813301.9356−1.8439.
(19)

We recall that the a()′smeasure the deviation from the
VGG CFFs. Thus, the interpretation of a(HIm) = 0.89322
is that the value of HIm that best fits the Hall A data
is ≈89% of that given by the VGG model. In Eq. 19,
the ∞ error values mean that the χ2

min + 1 value could
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not be reached and that it therefore lies outside the ±5-
times-VGG-CFF hypervolume. In some cases, a(ERe) for
instance, both positive and negative error bars are infinite.
Then, no constraint at all can be drawn on such CFF. In
some other cases, H̃Im for instance, one of the two errors is
finite and then a lower (or upper) limit on the CFF can be
drawn. The most favorable case is when the two error bars
are finite and lie in the ±5-times-VGG-CFF range. This
is, for the present kinematics, the case of the HIm, ẼIm

and ẼRe CFFs. HIm is the most constrained by far. Its
negative error bar is of the order of 100% while the positive
one is only of a few percent. We could also observe in the
simulations in the previous section at several instances
such asymmetric error bars forHIm, which reflect the non-
linearity of the problem.
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∼
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Fig. 11. Result of the fits for the 8 CFF multipliers
a(HIm), a(EIm), a(H̃Im), a(ẼIm), a(HRe), a(ERe), a(H̃Re)
and a(ẼRe), as a function of χ2

min, for 50 trials differing only
by the starting values of the fit. The value of the CFF mul-
tiplier corresponding to the χ2

min value for a given trial is in
red and its associated error bar corresponding to χ2

min + 1 is
in blue. This example is for the third t-bin of the KIN2 JLab
Hall A kinematics.

The top plot of Fig. 12 displays in a more visible way
the results of Fig. 11 for only a(HIm). The results are
shown for different trials differing only by their starting
values. In the central plot of Fig. 12, we display the re-
sults for another Hall A bin (third t-bin of KINX3), to
illustrate the variety of types of results, depending on the
kinematics which are studied. While for the top plot the
error bars, which are constant, are very asymmetric w.r.t.
the a(HIm) values which minimize the problem, in the
central plot the values of a(HIm) corresponding to χ2

min

lie, with a few fluctuations, around the center of the er-

ror bars, which are also constant. Then, as an illustration
of a 4 CFF fit, we show in the bottom plot of Fig. 12
the result of a fit with only HIm, H̃Im, HRe and H̃Re as
free parameters, the four other CFFs being set to their
VGG value. We observe double solutions. Depending on
the starting point, the fitter code ends up in one or in
the other of two solutions. The unnormalized χ2

min values
of the a(HIm) ≈ 0.25 and a(HIm) ≈ 0.69 solutions are,
respectively, ≈ 61.95 and ≈ 62.01. It is clearly not mean-
ingful to favor one solution rather than the other. We also
notice that the error bar ranges of the two solutions are
identical. We already encountered such a situation in the
previous section dedicated to simulations. We saw that
the “true” value was actually likely to lie between these
two solutions.

For unique final results, we learned from our Monte-
Carlo studies that a good and safe policy was to take as
most probable point the middle of the maximal error bars
of all trials. We illustrate the prescription in the right part
of each plot of Fig. 12 where we plot the final central value
and error bars that we will retain.

As we already discussed, the rather large error bars
in Fig. 12 do not reflect the statistical error of the data.
They reflect the influence of the sub-dominant CFFs on
the dominant HIm CFF and more generally the under-
constrained nature of the problem. This is illustrated in
Fig. 13 where we display the correlation (contour plot)

between the a(HIm) and a(H̃Im) multipliers for two Hall
A bins. The open squares show the values of a(HIm) cor-
responding to the minimum χ2 values of the fit. All these
solutions correspond to different starting values in the ±5-
times-VGG-CFFs hypervolume. We plot in Fig. 13 a sam-
ple of 50 fits results. The “asterisk curves” are the asso-
ciated contours corresponding to χ2

min + 1. The top plot
corresponds to the third bin in t of KIN2, i.e. the same
kinematics as in Fig. 11 and as the top plot of Fig. 12.
The bottom plot of Fig. 13 corresponds to the third t-bin
of KINX3, i.e. the same kinematics as in the central plot
of Fig. 12. One sees that the one-dimensional error bars
that are displayed in Fig. 12 correspond to the projections
on the a(HIm)-axis of the ellipse-like contours of Fig. 13.
For the top plot of Fig. 13, one should note that the el-
lipse is truncated on the upper side of the a(H̃Im) axis.

Thus, no positive error bar on H̃Im can be defined. This
explains the ∞ positive error bar of a(H̃Im) in Eq. 19. In

this case, this truncation on a(H̃Im) defines and influences
the negative error bar of a(HIm). Were the range of ±5-
times-VGG CFFs larger, the negative error bar on HIm

would be larger as well. This is the only model depen-
dency of this approach in the 8-CFFs case, as we already
underlined.

Such a truncation is not always happening. For the
kinematics of the bottom plot of Fig. 13, all fits, differing
only by their starting values, converge to a quasi-unique
(a(HIm), a(H̃Im)) solution. The full contour ellipse holds

in the (−5 < a(H̃Im) < 5, −5 < a(HIm) < 5) surface.

This means that constraints on H̃Im can also be drawn
for this particular bin.
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Fig. 12. Result of the fitted multiplier a(HIm) for several fits
differing on their starting values. Top: 8-CFFs fit for the third
t-bin of KIN2 (same bin as in Fig. 11). Center: 8-CFFs fit for
the third t-bin of KINX3. Bottom: 4-CFFs fit (HIm, H̃Im, HRe

and H̃Re) with the four other CFFs set to their VGG value,
for the fourth t-bin of KIN2. The points indicated by the hand
show the solutions that we advocate and that we will finally
retain.
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Fig. 13. Contour plot of the fit results in the (a(H̃Im), a(HIm)
plane). Top: third bin in t of KIN2 (same as top plot of Fig. 12).
Bottom: third t-bin of KINX3 (same as central plot of Fig. 12).
The open squares show the values of a(HIm) and a(H̃Im) cor-
responding to the minimum χ2 values of the fit. The “asterisk
curves” show the contour corresponding to χ2

min+1. The plots
have been produced by superposing the results of 50 fits dif-
fering only by their starting values.

We now display in Fig. 14 the outcome of the fits for
the dominant HIm CFF for the 20 (xB , Q

2, t) Hall A bins.
For each of the 20 bins, hundreds of starting points have
been randomly chosen, leading to results for the 8 CFFs
of the form of Figs. 11 and 12. The HIm CFF is the one
always coming out with finite negative and positive error
bars. Figure 14 shows our fit results in the two approaches:
8 CFFs free parameters with red triangles and 4 CFFs free
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Fig. 14. Result of the fitted HIm as a function of t, for Hall-A
kinematics, with the 8 CFFs as free parameters in red triangles
and with 4 CFFs as free parameters (HIm, H̃Im, HRe and H̃Re,
the other four CFFs being fixed at their VGG values) in black
triangles. The black triangles have been slightly shifted to the
right of the red triangles for visibility. Upper left plot: KIN2;
upper right plot: KIN3; lower left plot: KINX2; lower right
plot: KINX3. Here we have converted the xB values into ξ
values using Eq. 15.

parameters (HIm, H̃Im, HRe and H̃Re with the four other
CFFs set to their VGG values) with black triangles. The
two sets of results are very compatible, with of course sig-
nificantly smaller error bars in the case of the 4-CFFs fit.
Except maybe for the bin of the lower left plot of Fig. 14,
one can in general discern a decreasing trend for HIm as
−t increases. For comparison, we also plot in Fig. 14 the
values of HIm from the VGG model, with black stars. The
model exhibits, indeed, such a decrease with −t. However,
the VGG model, with the valence (sea) quark profile pa-
rameter choice bv = 1 (bs = 1) respectively [28], seems to
overestimate by a factor ≈ 2 the outcome of the fits.

The error bars that we obtain on HIm are rather large.
They are of the order of 100% for the 8 CFFs fits and
of 50% for the 4 CFF fits. This prevents to draw strong
conclusions at this stage. With additional constrains, like
the measurement of new observables, which is expected to
come in the near future, the situation shall improve. We
are paving the way for those days.

4.2 CLAS data

The CLAS collaboration has measured the φ distribution
of the two observables σ and ∆σLU for 21 (xB , Q

2) bins
in the range 0.12 . xB . 0.50, 1.11 . Q2 . 3.90, with 6

t-bins (in most cases), ranging up to −t = 0.5 GeV2. The
CLAS collaboration has also measured the φ distribution
of the AUL and ALL asymmetries for 5 (xB , Q

2) bins,
in a roughly equivalent phase space to the σ and ∆σLU

case, with 4 t-bins (in most cases), ranging up to −t ≈
1.3 GeV2. Among these ≈ 20 (xB , Q

2, t) bins, 15 have
common kinematics with the σ and ∆σLU measurements.
It should be noted that AUL and ALL have been measured
up to larger −t values than σ and ∆σLU .

4.2.1 Fits of σ and ∆σLU .

In a first stage, we extract HIm out of σ and ∆σLU , as we
did for the Hall A data, for all the CLAS (xB , Q

2, t) bins.
Most of the results of our fits look like those we obtained
for Hall A (Fig. 12). In particular, HIm always comes out
of the fit with finite error bars. However, in some cases, we
encounter new features such as those shown in Fig. 15. The
figure shows a few examples of the a(HIm) multipliers that
were extracted for different randomly generated starting
points for three particular (xB, Q

2, t) CLAS bins. The
first example (top plot of Fig. 15) shows a case where the
results for a(HIm) have constant error bars but large fluc-
tuations for the values corresponding to χ2

min. The next
two examples (central and bottom plots of Fig. 15) show
cases where double solutions occur. In the bottom plot, re-
sulting from a 4 CFF fit (with HIm, H̃Im, HRe and H̃Re

as free parameters and the other four CFFs being fixed
at their VGG values), the error bars do not even over-
lap. Such feature was also found in Ref. [32] which also
explored and considered in part the present local fitting
method and these new JLab data. As done previously,
based on our simulations studies, for all those cases, we
will take as most probable point the middle of the maxi-
mal error bars of all trials. This is illustrated by the point
indicated by the hand in Fig. 15.

With such prescription, Fig. 16 shows our results for
HIm with the two approaches that we considered: 8 CFFs
as free parameters (red open squares) and the 4 CFFs

HRe, H̃Re, HIm and H̃Im as free parameters, with the
others set to their VGG value (black solid squares). We
notice the good agreement between the 8-CFFs and 4-
CFFs fit results. The latter have in general smaller error
bars, as expected. We also insert in the figure the Hall-
A results for HIm with the 8 CFFs as free parameters
that we obtained for the KIN3 and KINX3 bins (red solid
triangles). These two bins correspond almost exactly to
the CLAS (xB/ξ, Q

2)=(0.3345/0.2008, 2.2308 GeV2) and
(0.3646/0.2229, 2.3508 GeV2) bins. There is a good gen-
eral agreement between the HIm values between the two
experiments. For reference, we also show the VGG predic-
tions in Fig. 16 with stars. We published a similar figure
in Ref. [16], where the 4-CFFs fit results were not present
and to which we had added the fit results obtained when
the AUL and ALL observables entered in the fit. We will
discuss these latter results in the next subsection.

We observe the general trend that HIm decreases with
increasing −t. To quantify this, we fit these t-dependences
with an exponential function AeBt, with A and B as free
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Fig. 15. Examples of results for the fitted multiplier a(HIm)
for several fits, differing only by their starting values. Top
plot: 8-CFFs fit for the CLAS kinematics (xB , Q2, t)=(0.1541,
1.2656 GeV2, -0.1526 GeV2). Center plot: 8-CFFs fit for the
CLAS kinematics (0.126, 1.1114 GeV2, -0.1078 GeV2). Bot-
tom plot: 4-CFFs fit (HIm, H̃Im, HRe and H̃Re, the other four
CFFs being fixed at their VGG values) for the CLAS kinemat-
ics (0.1541, 1.2652 GeV2, -0.1082 GeV2).
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Fig. 16. The HIm CFF as a function of t for the 20 CLAS (xB,
Q2) bins, fitting only σ and ∆σLU . Red open squares: results
of the CLAS data fit with the 8 CFFs as free parameters.
Black solid squares: results of the CLAS data fit with the 4
CFFs HRe, H̃Re, HIm and H̃Im as free parameters, the other
4 CFFs being set to their VGG value. Red triangles ((xB/ξ,
Q2)=(0.3345/0.2008, 2.2308 GeV2) and (0.3646/0.2229, 2.3508
GeV2) bins): results of the Hall-A data fit with the 8 CFFs as
free parameters (taken from Fig. 14). Stars: VGG predictions.
The black solid square points have been slightly shifted to the
right of the red open square points for visibility. The solid line
shows an exponential fit of the red open squares and the dashed
line an exponential fit of the black solid squares.

parameters. The solid lines in Fig. 16 show the fit of the
red empty squares and the dashed lines the fit of the black
solid squares. We will discuss the results for the amplitude
A and for the slope B in the next section.

As we saw with our simulation studies in the previ-
ous section, fitting σ and ∆σLU can also lead to some
constraints on the HRe CFF (in Figs. 3 and 4, lower lim-
its could be obtained). We obtained for this CFF results
with both error bars finite, for 12 CLAS (xB , Q

2) bins,
out of 20. Figure 17 shows these results. While for the
vast majority of points there is good agreement between
the results of the 8-CFFs (red open squares) and of the 4-
CFFs (black solid squares) fits, for a few points there are
disagreements between the results of the two approaches.
This is the case for instance for the first t point of the
upper left plot in Fig. 17. Such differences had not been
observed previously forHIm. We notice that this disagree-
ment actually occurs when the 8 CFFs fit yields a result
far from the VGG prediction. For the first t point of the
upper left plot in Fig. 17, the 8 CFFs fit result has ac-
tually an opposite sign to the VGG prediction. We saw
in Section 3.3 that the 4-CFFs fit was reliable when the



16 R. Dupré, M. Guidal, S. Niccolai and M. Vanderhaeghen: Extraction of CFFs from DVCS data

4 non-fitted CFFs were set to their true value. For real
data, we assumed that VGG could make up a good guess
for such “true” value. However, the important disagree-
ment between the 8-CFFs fit and the VGG prediction for
a few particular (xB , Q

2, t) bins hints that VGG actually
does not estimate correctly the “true” values for these un-
fitted CFFs, for these specific kinematics. We shall there-
fore conclude that the 4-CFFs fits, which, we recall, are
model-dependent, are not reliable for these few bins where
there is an important disagreement between the results of
the 8-CFFs and the 4-CFFs fits.
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Fig. 17. HRe as a function of t for 12 CLAS (xB , Q2) bins,
fitting only σ and ∆σLU . Red open squares: results of the
CLAS data fit with the 8 CFFs as free parameters. Black solid
squares: results of the CLAS data fit with the 4 CFFs HRe,
H̃Re, HIm and H̃Im as free parameters, the other 4 CFFs be-
ing set to their VGG value. Red solid circles: results of the fit
with the 8 CFFs as free parameters, fitting in addition AUL and
ALL. The black solid squares, as well as the red solid circles,
have been slightly shifted to the right of the red open squares
for visibility. Red solid triangle (lowest row, third column): re-
sult of the Hall A data fit with the 8 CFFs as free parameters.
Black solid triangle (lowest row, third column): result of the
Hall A data fit with the 4 CFFs HRe, H̃Re, HIm and H̃Im

as free parameters, the other 4 CFFs being set to their VGG
value. Stars: VGG predictions. In the figure, we have converted
the xB values to ξ values.

We also show in Fig. 17 the onlyHRe value, i.e. with fi-
nite negative and positive error bars, that we could get out
of the Hall A σ and ∆σLU data. It lies in the third column
plot of the lowest row in Fig. 17, which is the CLAS (xB ,
Q2) bin which approximately matches the Hall A KINX3
bin. It is represented by the red (black) solid triangle for
the 8 (4) CFFs free parameters fit. Both the 8-CFFs and

the 4-CFFs fits give similar values. There seems to be
an incompatibility between these Hall A HRe values and
the neighboring CLAS HRe values. It was pointed out in
Ref. [13] that there was probably some tension between
the Hall A and the CLAS unpolarized cross sections. This
discord in the data might explain the difference in the
HRe fitted values between the two experiments, as HRe

is one important contributor to the unpolarized cross sec-
tion [26]. We notice that there is not such conflict in the
beam-polarized cross sections. This may explain why the
HIm values were found compatible between the Hall A
and CLAS experiments (see Fig. 16).

We finally display in Fig. 17, with red circles, the re-
sults that we obtain for HRe when we fit, with 8 CFFs,
AUL and ALL from CLAS in addition to σ and ∆σLU . We
discuss these AUL and ALL fits in more details in the next
subsection. For the moment being, we observe that these
points are in very good agreement with the HRe values
obtained from the fit of the CLAS σ and ∆σLU data only.

The t-dependence ofHRe doesn’t appear simple. There
seems to be several structures, in particular changes of
signs. We notice that such zero-crossings for HRe are pre-
dicted by models (at least for HERMES kinematics, see
Refs. [22,24,33]). The HRe CFF is in general not easy to
interpret and model, as it results from a weighted integral
of x over its whole range (−1 to +1). We expect that our
fit results will permit to constrain significantly the models.

4.2.2 Fits of σ, ∆σLU , AUL and ALL.

We now take into account the longitudinally polarized tar-
get asymmetries measured by CLAS, fitting simultane-
ously the four observables σ, ∆σLU , AUL and ALL. There
are 15 (xB , Q

2, t) bins for which the kinematics is approx-
imately common between the σ, ∆σLU and the AUL and
ALL measurements.

We present in Fig. 18 the comparison, for one given
(xB, Q

2, t) bin, of the a(H̃Im) vs a(HIm) contour plots
when one fits only σ and ∆σLU (top plot) and one fits
σ, ∆σLU , AUL and ALL (bottom plot). This comparison
is done for (xB , Q

2, t) bins at approximately the same
kinematics: (0.2448, 2.1168 GeV2, -0.2032 GeV2) for σ and
∆σLU and (0.2556, 1.9700 GeV2, -0.2343 GeV2) for AUL

and ALL. Both plots are obtained with 8-CFFs fits. When
only σ and ∆σLU enter the fit (top plot), one sees that

a(H̃Im) is not constrained and can take any value between

-5 and +5. These limits on a(H̃Im) determine the error on

a(HIm), as was mentioned in Section 3.2.2. If a(H̃Im) were
allowed to vary beyond ± 5, the error on a(HIm) would
be larger. The correlation between the two CFFs HIm and
H̃Im is clear from this plot. The bottom plot of Fig. 18
shows that the introduction of AUL in the fit constrains
a(H̃Im) and, as a consequence, strongly reduces the error

bars on a(HIm). H̃Im is indeed known to be an important
contributor to AUL [26].

Figure 19 shows with the red circles the results forHIm

at the 4 (xB , Q
2) bins (corresponding to 12 (xB , Q

2, t)
bins) for which the 4 observables σ, ∆σLU , AUL and ALL
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Fig. 18. Top: contour plot of H̃Im vs HIm when only σ and
∆σLU are fitted (the error bars on H̃Im are not shown here as
they are infinite). Bottom: contour plot of H̃Im vs HIm when
σ, ∆σLU , AUL and ALL are fitted. The open squares show
the minimum χ2 values and the “asterisk curves” the contour
corresponding to χ2

min + 1. The plots have been produced by
superimposing the results (χ2

min points and contours) of 50 fits
differing by their starting points. The (xB , Q2, t) kinematics of
the left plot are (0.2448, 2.1168 GeV2, 0.2032 GeV2) and the
one of the right plot are (0.2556, 1.9700 GeV2, 0.2343 GeV2).

can be simultaneously fitted. There is in principle a fifth
(xB , Q

2) bin where such a simultaneous fit can be done
but the fitted HIm has infinite error bars due to the large
uncertaintities in the experimental data.

We also display in Fig. 19 with red open and black
solid squares the results from the fit of only σ and ∆σLU ,
which are taken from Fig. 16. We observe in general an
excellent compatibility between all the points: the 8-CFFs
fit of σ and ∆σLU (red open squares), the 4-CFFs fit of σ
and ∆σLU (black solid squares) and the 8 CFFs fit of σ,
∆σLU , AUL and ALL (red solid circles).

In Fig. 16, the red triangles have in general smaller
error bars than the squares. This can easily be under-
stood from Fig. 18: adding the extra constraints from
AUL and ALL reduces the correlation between HIm and
H̃Im and therefore the error on both CFFs. A partic-
ularly illustrative example is the red solid circle at the
smallest |t|-value in the lower left plot of Fig. 19 ((xB/ξ,
Q2)=(0.2744/0.1590, 2.3485 GeV2)), where one goes from
a precision of ≈85% (red open square) to ≈70% (black
solid square) to ≈20% (red solid circle) in the extraction
of the HIm CFF.

We fit in Fig. 19, for each (xB , Q
2) bin, the t depen-

dence of the HIm values that we extracted. We use an
exponential function of the form AeBt with A and B as
free parameters. The dashed line shows the fit of the 6 red
open squares (i.e. the 8-CFFs fit of σ and ∆σLU ). The
dash-dotted line shows the fit of the 6 black solid squares
(i.e. the 4-CFFs fit of σ and ∆σLU ). The dotted line shows
the fit of the 3 red circles (i.e. the 8-CFFs fit of σ, ∆σLU ,
AUL and ALL). The solid line shows the fit of the 3 red
circles and of the 3 red open squares whose t-values are
different from the red circles (i.e. the 8 CFFs fit of σ,
∆σLU , AUL and ALL and of σ, ∆σLU when only these
two observables are available). We will discuss the results
of the A and B values and their interpretation in the next
section.

From the simultaneous fit of σ, ∆σLU , AUL and ALL,
we can also extract the H̃Im CFF. The red circles in
Fig. 20 show the results that we obtained. We didn’t ob-
tain results for H̃Im with both error bars finite for each of
the 12 (xB , Q

2, t) bins of Fig. 19. As seen in the simula-
tion section, in some cases and particular kinematics it is
also possible to get a constraint on H̃Im only from the fit
of σ and ∆σLU . We show the H̃Im values resulting from
the fit of the CLAS σ and ∆σLU with red empty squares
in Fig. 20. Similarly, three H̃Im values (in the lower right
plot of Fig. 20) can be obtained from the fit of the Hall A
σ and ∆σLU ’s. These results obtained from the fit of only
two observables are well compatible with those obtained
from the fit of four observables. Still, the gain of using AUL

and ALL in the fit is obvious: more precise results on H̃Im

and more kinematics for which H̃Im can be extracted. For
reference, we also show in Fig. 20 the VGG prediction
for H̃Im with stars. When there are VGG predictions and
no fit result for H̃Im, it means that there were AUL and
ALL data but that the fit didn’t converge and/or ended up
with non-finite error bars. Given the scarce data and their
unertainties, we do not carry out a fit of the t-dependence.
However, it is clear by eye that the t-dependency is quite
flat, much more than for HIm.

In addition to the HIm and H̃Im CFFs, the HRe CFF
was also obtained in the simultaneous fit of σ, ∆σLU , AUL

and ALL. In principle, the ALL observable has sensitivity
to the real part of the DVCS amplitude and to HRe in
particular [26]. In Fig. 17 the results that we obtained
with these additional observables in the fit are shown by
red solid circles, for the few (xB , Q

2, t) bins for which both
error bars of HRe are finite. In general, the results confirm
those obtained with the fit of only σ and ∆σLU (red open
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Fig. 19. The HIm CFF as a function of t for 4 CLAS (xB,
Q2) bins where the four observables σ, ∆σLU , AUL and ALL

can be fitted simultaneously. Red open squares: results of the
fit of σ and ∆σLU with the 8 CFFs as free parameters. Black
solid squares: results of the fit of σ and ∆σLUwith the 4 CFFs
HRe, H̃Re, HIm and H̃Im as free parameters, the other 4 CFFs
being set to their VGG values. Red circles: results of the fit of
σ, ∆σLU , AUL and ALL with the 8 CFFs as free parameters.
The black solid squares and, in some cases the red circles, are
shifted to the right of the red open square points for visibility.
The dashed line shows the fit of the 6 red open squares (i.e.
the 8-CFFs fit of σ and ∆σLU ). The dash-dotted line shows
the fit of the 6 black solid squares (i.e. the 4-CFFs fit of σ and
∆σLU ). The dotted line shows the fit of the 3 red circles (i.e.
the 8-CFFs fit of σ,∆σLU , AUL and ALL). The solid line shows
the fit of the 3 red circles and the 3 red open squares whose
t-values are different from the red circles (i.e. the 8-CFFs fit of
σ, ∆σLU , AUL and ALL and of σ, ∆σLU when only these two
observables are available).

squares). The experimental precision on ALL doesn’t seem
to be sufficient to dramatically change the HRe results
obtained by the fit of only σ and ∆σLU . Only for the
largest xB bin (lower right plot of Fig. 17), one can see
an effect as the red solid circles show a somewhat smaller
HRe magnitude and smaller error bars than the red open
squares, although all values are compatible within error
bars.

In conclusion of this section, we have obtained con-
straints on the HIm CFF from the simultaneous fit of
σ and ∆σLU . The relative error bars range from ≈40%
to ≈100%, depending on the kinematics and on the ex-
periment (CLAS or Hall A), in the case of the quasi-
model-independent 8-CFFs fit. The 4-CFFs approach can
decrease these uncertainties to ≈10% in some cases, but
this is at the price of a model-dependent input (i.e. fix-
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Fig. 20. The H̃Im CFF as a function of t for 4 CLAS (xB,
Q2) bins. Red circles: results of the fit of σ, ∆σLU , AUL and
ALL with the 8 CFFs as free parameters. Red empty squares:
results of the fit of σ and∆σLU only, from CLAS. Red triangles:
results of the fit of σ and∆σLU only, from Hall A. For visibility,
the red empty square of the upper left plot has been slightly
shifted to the right of the red circle. Stars: VGG predictions.

ing the four non-varying CFFs to a model value). An im-
portant improvement is achieved by introducing the ad-
ditional AUL and ALL observables in the 8-CFFs fit. The
drawback is the limited amount of data available as it is
more challenging to measure polarized-target observables.
In addition to the HIm CFF, some constraints on the HRe

CFF can be extracted from the simultaneous fit of σ and
∆σLU (with very little improvement from the AUL and

ALL observables input) as well as on the H̃Im CFF with
the input of AUL.

5 Physics interpretation

In this section, we will discuss how to obtain a tomo-
graphic image of the proton, i.e. the x-dependence of the
charge radius of the proton, from the ξ and t-dependencies
of the HIm CFF that we just extracted with our fitting
procedure.

In the following, we will parametrize the data for HIm

of Eq. (6) in the following way:

HIm(ξ, t) = A(ξ)eB(ξ)t. (20)

Fig. 21 shows the ξ-dependences of the slope B and am-
plitude A determined from the exponential fits of the t-
dependence of HIm displayed in Figs. 16 and 19. In this
figure, we have decided to limit the upper range in ξ to
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iA ∆iA sA ∆sA
8 CFFs fit of σ, ∆σLU 6.09 2.21 -26.6 17.8
4 CFFs fit of σ, ∆σLU

(others set to VGG) 6.95 1.38 -32.3 11.1
8 CFFs fit of

σ, ∆σLU , AUL, ALL 4.89 2.21 -15.8 16.8

Table 1. Fit results of A as a function of ξ (Fig. 21 top) by
the function A = iA + sAξ with the associated errors ∆iA and
∆sA.

iB ∆iB sB ∆sB
8 CFFs fit of σ, ∆σLU 4.00 2.77 -15.6 25.2
4 CFFs fit of σ, ∆σLU

(others set to VGG) 4.67 1.74 -20.6 16.1
8 CFFs fit of

σ, ∆σLU , AUL, ALL 3.64 2.44 -11.0 20.0

Table 2. Fit results of B as a function of ξ (Fig. 21 bottom)
by the function B = iB + sBξ with the associated errors ∆iB
and ∆sB .

0.22 as, at large ξ values, the uncertainties in B and A be-
come too large to be useful and to make an impact. The
red open squares correspond to the 8 CFFs fit of the CLAS
σ and ∆σLU ’s as obtained from the solid curves of Fig. 16.
For most of the CLAS bins, there are two Q2 values for
one ξ value, which explains why the red open squares gen-
erally come in pairs in Fig. 21. We notice, in passing, the
good compatibility, within admittedly rather large error
bars, of the paired points. This is a hint that HIm is quite
independent of Q2, and supports our starting hypothesis
of working in the QCD leading-order and leading-twist
framework. In Fig. 21, the black solid squares correspond
to the 4-CFFs fit of the CLAS σ and ∆σLU ’s as obtained
from the dashed curves of Fig. 16. The red solid circles
correspond to the 8 CFFs fit of the CLAS σ, ∆σLU , ALL

and AUL’s, obtained from the solid curves of Fig. 19.
In spite of the large size of the errors, one can dis-

cern that, for all fit configurations, both the t-slope B and
the amplitude A of the exponentials tend to increase as ξ
decreases. To quantitatively support this qualitative im-
pression, we fit the different sets of points by straight lines.
The dashed curves in Fig. 21 show the fit of only the red
open squares, whereas the dash-dotted curves show the fit
of only the black solid squares. The solid curves show the
fit of the 4 red solid circles and of the 4 red open squares
whose t-values are different from the red solid circles. It is
clear in Fig. 21 that all the slopes of the curves are neg-
ative, i.e. that the both A and B increase as ξ decreases.
The numerical results of the linear fits in ξ are displayed
in Tables 1 and 2.

It is important to underline the systematic nature of
the error bars to properly assess the significance of these
results. The errors encode the level of unknown in the sub-
leading CFFs, therefore a solution with flat distributions
would have to be compensated with significantly stronger
opposite slopes for other CFFs. At the price of more model
dependence, global fits should be able to clarify how much
flexibility the GPDs can have in this regard.
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Fig. 21. Top: Amplitude A of the exponential fit of HIm as
a function of ξ, corresponding to the extrapolated value of
HIm at t = 0, as a function of ξ. Bottom: t-slope B of the
exponential fit of HIm, as a function of ξ. Red open squares: 8
CFFs fit of CLAS σ and ∆σLU ’s. Black solid squares: 4 CFFs
fit of CLAS σ and ∆σLU ’s with the other CFFs set to their
VGG values. Red circles: 8 CFFs fit of CLAS σ, ∆σLU , ALL

and AUL’s. Black open crosses: results quoted in Ref. [13], i.e.
obtained with a 4 CFFs fit with the other CFFs set to 0. When
there are two points for the same ξ value, one of the red solid
squares, black solid squares and red circles have been slightly
shifted to the right for sake of better visibility. The black open
crosses have been slightly shifted to the left of the red open
squares also for better visibility. The dashed lines show a linear
fit of only the red open squares. The dash-dotted lines show a
linear fit of only the black solid squares. The solid lines show a
linear fit of the 4 red solid circles and of the 4 red open squares
when their t-values are different from the red solid circles. The
latter corresponds with the 8 CFFs fit of the CLAS σ, ∆σLU ,
AUL and ALL’s and of the CLAS σ, ∆σLU ’s when the t values
are different. When there are two points for the same ξ value,
both are included in the linear fits.
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For comparison purposes, we display in Fig. 21, with
black open crosses, the slopes and amplitudes quoted in
Ref. [13], i.e. obtained with a 4 CFFs fit and the others
set to 0 at the three ξ values where they were extracted.
Although this method should certainly not be pursued
in light of what our simulations taught us, notably the
underestimation of error bars, we see that it allows to
give some first general trends. In particular, it allowed to
first suggest the conclusions that we now corroborate in
a more meticulous way, namely the rise of the amplitude
HIm at t = 0 with decreasing ξ, as well as the rise of the
t-slope of HIm with decreasing ξ.

Physically, the behaviors of A and B can be under-
stood as follows. The parameter A can be associated to
the density of quarks in the nucleon. So the rise of A as
ξ decreases reflects an increase of the quark (and anti-
quark) density as smaller longitudinal momentum frac-
tions are probed. Furthermore, we already mentioned in
the introduction that t is the conjugate variable of the
transverse localization of the quarks in the nucleon (in
the light-front frame). Thus, the rise of B as ξ decreases
reflects an increase of the transverse size of the proton as
smaller longitudinal momentum fractions are probed.

With these considerations, one can find a more physi-
cally motivated ansatz for the ξ-dependences of A and B
as compared to the linear fits shown in Fig. 21. At small ξ,
one expects A to rise steeply as 1/ξ due to the sea-quark
contribution. Furthermore, A is expected to vanish in the
limit ξ → 1, when one valence quark takes all longitu-
dinal momentum. Therefore, one can parametrize the ξ-
dependence of A by the simple one-parameter form which
embodies both features:

A(ξ) = aA(1 − ξ)/ξ. (21)

For the slope B, we expect it to sharply decrease from
a Regge-type behavior when ξ → 0 to a flat t-dependence
in the limit ξ → 1, reflecting the pointlike coupling to a
valence quark carrying all longitudinal momentum. To en-
compass both limits, one can parametrize the ξ-dependence
of B by the following one-parameter ansatz in ξ:

B(ξ) = aB ln(1/ξ). (22)

The parameters aA and aB can be determined from
a fit to the A and B data of Fig. 21. In the following,
we will keep only the set of data corresponding to the 8
CFFs fit of σ, ∆σLU , AUL, ALL, i.e. the 4 red solid circles
and the 4 red open squares whose t-values are different
from the red solid circles in Fig. 21. This corresponds to
the most precise model-independent set of data in our ap-
proach. To further constrain our parametrization, one can
also add the HIm value that was extracted for HERMES
kinematics in Refs. [22,9] with the same technique as in
the present work. This corresponds to fitting the points
that we show in Fig. 22. In this figure, the black solid cir-
cles correspond to the 6 lowest ξ bins of the CLAS data
set of Fig. 21 and the black solid square corresponds to
the HERMES point. Given their uncertainties larger than

100%, the largest ξ bins of the CLAS data set don’t bring
significant information, and were omitted in the following
discussion. Notice also that we decided to adopt a loga-
rithmic scale for the horizontal axis (i.e. ξ) and to plot ξA
for the amplitude in the top plot. A fit to these data with
the functional forms of Eqs. (21, 22) yields the values:

aA = 0.36± 0.06, aB = 1.06± 0.26 GeV−2. (23)

The resulting fits are shown by the bands in Fig. 22.

We also compare in Fig. 22 the experimentally ex-
tracted values of the amplitude A and the t-slope B with
the expectations from GPD models. We use two GPD
models: the dual model [27] and the VGG double distri-
bution model [5,28,29,30]. In the following, we will tag
the latter DD to underline that it belongs to the generic
double distribution family. We will use three choices of the
valence (sea) profile parameters bv (bs) respectively. For
large values of these profile parameters (b → ∞), the cor-
responding GPD H(x, ξ, t) tends to the GPD H(x, 0, t),
where the effect of the skewness (i.e. its ξ-dependence)
disappears. The three parameter combinations are chosen
to correspond with the cases where both valence and sea
distributions show strong skewness (bv = bs = 1), where
only the valence distributions shows a strong skewness
(bv = 1, bs = 5), and where neither the valence nor the
sea distributions show any strong skewness (bv = bs = 5).
For the dual model, we have used the lowest forward-like
function [27]. For both models, we use the same empiri-
cal forward parton distributions as input and use in both
cases a Regge parameterization for the t-dependence with
Regge slope parameter 1.05 GeV−2. The latter value is
obtained from the requirement that the first moment of
the valence GPD is fixed by the slope at t = 0 of the pro-
ton Dirac form factor. We refer the reader to the review
of Ref. [9] for details of these parameterizations.

Comparing the extracted data for the amplitude A
with theory, we notice from Fig. 22 that in the region
0.05 . ξ . 0.2 the data tend to lie systematically below
the result of the dual model (with lowest forward-like func-
tion) and the DD models where sea quarks display a strong
skewness (bs = 1). The DD models with small skewness
effects of sea-quarks (bs = 5) are in good agreement with
the data. To distinguish for the valence quarks between
the cases of strong skewness (bv = 1) and weak skewness
(bv = 5) will require data in the region ξ & 0.3. Such data
are expected from the forthcoming dedicated DVCS pro-
gram of JLab at 12 GeV. We also notice from Fig. 22 that
the GPD models predict a maximum for ξA(ξ) around
ξ ≈ 0.3, which is due to the x-dependence of the underly-
ing valence quark distributions. At present, the available
data only allow to fit one parameter. Therefore, the one-
parameter fit of Eq. (21), shown by the band in Fig. 22
shows a monotonic decrease from its constrained value at
small ξ to its (imposed) vanishing behavior at ξ → 1.
Once data will become available around ξ ≈ 0.3, one can
try more elaborate fit functions encompassing the inter-
mediate structures in the valence region as predicted by
the GPD models.
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Fig. 22. Top: Amplitude A of HIm, multiplied by ξ, as a
function of ξ. Bottom: t-slope B of HIm as a function of ξ.
Data points: 8 CFFs fit from CLAS (circles) as extracted in
the present work and from HERMES (square) as extracted in
Refs. [22,9]. The one-parameter fits to these data points ac-
cording to Eqs. (21, 22) are shown by the bands, correspond-
ing to a 1σ variation of aA and aB, whose fit values are given
by Eq. (23). When there are two points for the same ξ-value,
both are included in the fits. The theory curves correspond to
the dual model and to the double distribution (DD) model for
three choices of the valence (sea) profile parameters bv (bs).

For the exponential t-slope B(ξ), both the data as well
as the models follow a ln(1/ξ) behavior, thus leading to an
increase of the slope as ξ decreases. Only for ξ & 0.5, which
is beyond the reach of the current data, some differences
between the models appear.

We now seek to relate the increasing t-slope B(x) when
x decreases with the variation of the spatial size of the
proton when probing partons with different longitudinal
momentum fraction x. For this purpose, we relate it to
the helicity-averaged transverse charge distribution in the
proton, denoted by ρ, which is obtained through a 2-
dimensional Fourier transform of the FF F1 as [17]:

ρ(b⊥) =

∫

d2∆⊥

(2π)2
e−ib⊥·∆⊥F1(−∆2

⊥). (24)

Here b⊥ denotes the quark position in the plane trans-
verse to the longitudinal momentum of a fast moving pro-
ton, and the conjugate momentum variable ∆⊥ denotes
the momentum transfer towards the proton. The squared
radius of this unpolarized 2-dimensional transverse charge
distribution in the proton is then defined as:

〈b2⊥〉 =

∫

d2b⊥b
2
⊥ρ(b⊥). (25)

The squared radius of the proton FF F1, denoted by 〈r21〉,
is usually defined through its Taylor expansion:

F1(−∆2
⊥) = 1− 〈r21〉∆

2
⊥/6 +O(∆4

⊥), (26)

which allows to readily identify 〈b2
⊥
〉 = 2/3〈r21〉. The ex-

perimental extraction of 〈r21〉 based on elastic electron-

proton scattering data yields [34]: 〈r21〉 = 0.65± 0.01 fm2,
resulting in the empirical value for the squared radius of
the proton’s transverse charge distribution:

〈b2⊥〉 = 0.43± 0.01 fm2 = 11.05± 0.26 GeV−2. (27)

Similarly to the FFs, the t variable in the GPDs is the
conjugate variable of the impact parameter. For ξ = 0
(where one identifies t = −∆2

⊥
), one therefore has an im-

pact parameter version of GPDs through a Fourier integral
in tranverse momentum ∆⊥, which for a parton of flavor
q reads as :

ρq(x,b⊥) =

∫

d2∆⊥

(2π)2
e−ib⊥·∆⊥Hq

−(x, 0,−∆⊥
2). (28)

Here Hq
−(x, 0, t) is the so-called non-singlet or valence

GPD combination, defined as:

Hq
−(x, 0, t) ≡ Hq(x, 0, t) +Hq(−x, 0, t), (29)

with 0 ≤ x ≤ 1. At ξ=0, the function ρq(x,b⊥) can then
be interpreted as the number density of quarks of flavor q
with longitudinal momentum fraction x at a given trans-

verse distance b⊥ (relative to the transverse c.m.) in the
proton [17]. Note that the transverse position of the quarks
and their longitudinal momenta are independent variables
which can be determined simultaneously.
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Generalizing Eq. (25), one can define the x-dependent
squared radius of the quark density in the transverse plane
as:

〈b2⊥〉
q(x) =

∫

d2b⊥b
2
⊥
ρq(x,b⊥)

∫

d2b⊥ρq(x,b⊥)
. (30)

Inserting Eq. (28) in Eq. (30) allows one to express the
x-dependent squared radius as:

〈b2⊥〉
q(x) = −4

∂

∂∆2
⊥

lnHq
−(x, 0,−∆⊥

2)

∣

∣

∣

∣

∆⊥=0

. (31)

Assuming the t-dependence of the valence GPDHq
−(x, 0, t)

to be exponential of the form:

Hq
−(x, 0, t) = qv(x)e

B0

−
(x)t, (32)

with qv(x) the corresponding valence quark distribution,
Eq. (31) then yields for each flavor q:

〈b2⊥〉
q(x) = 4B0

−(x). (33)

The x-independent squared radius is obtained from 〈b2
⊥
〉q(x)

through the following average over x:

〈b2⊥〉
q =

1

Nq

∫ 1

0

dx qv(x) 〈b
2
⊥〉

q(x), (34)

with the integrated number of valence quarks Nu = 2 and
Nd = 1, for the proton. The Dirac squared radius 〈b2

⊥
〉 is

then obtained as the charge weighted sum over the valence
quarks:

〈b2⊥〉 = 2eu〈b
2
⊥〉

u + ed〈b
2
⊥〉, (35)

with quark electric charges eu = +2/3 and ed = −1/3. A
Regge ansatz for the t-dependence of Hq

−(x, 0, t) yields:

B0
−(x) = aB0

−

ln(1/x), (36)

with aB0

−

the Regge slope. When evaluating the corre-

sponding integral of Eq. (34), using the empirical con-
straint of Eq. (27) for 〈b2

⊥
〉, we obtain the estimate:

aB0

−

= (1.05± 0.02)GeV−2. (37)

To quantitatively compare this with the t-slope ofHIm

defined through Eq. (20), we need to be aware of a differ-
ence. The experimentally measured t-slope B(x) is for the
singlet GPD combination H+(x, x, t). On the other hand,
the t-slope B0

−(x) of Eq. (36, 37) is for the valence GPD in
the limit ξ = 0, i.e. for the function Hq

−(x, 0, t) for a quark
of flavor q. In our analysis we will assume that the function
B0

−(x) is the same for u and d quarks, in agreement with
the observed universality of the Regge slopes for meson
trajectories. To get some quantitative idea how large the
difference between the flavor-independent slopes B0

− and
B is, we perform a study within GPD models. In Fig. 23,
we show the x-dependence of the ratio B0

−(x)/B(x) within
the same dual and DD GPD models which we previously
had compared to data (Fig. 22). One sees from Fig. 23 that

DD: bv = bs = 5

DD: bv = bs = 1

DD: bv = 1,  bs = 5
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Fig. 23. x-dependence of the ratio B0
−(x)/B(x), with B0

−

the exponential t-slope of Hp
−
(x, 0, t) according to Eq. (32),

and B the exponential t-slope of Hp
+(x, x, t) according to

Eq. (20). The theory curves correspond to the dual model
(red dashed curve) and the double distribution (DD) model for
three choices of the valence (sea) profile parameters bv (bs), as
indicated.

B0
− is smaller than B, approaching the latter for small x.

We also notice that B0
−(x) decreases much faster than

B(x) in the limit x → 1. For the x range of the avail-
able data, 0.05 . x . 0.2, we notice that the GPD models
with bs = 5, which were found to be compatible with both
the data for A and B, yield: B0

−/B ≃ 0.90− 0.95. Oppor-
tunely, in the x-range of the data studied in this work, this
correction factor is close to 1, and therefore the model er-
ror in passing from B(x) to B0

−(x) is much smaller than
the experimental error. In our extractions we will use the
DD model for bv = 1 and bs = 5 (black curves in Figs. 22,
23) which was found to yield a good description of the
available data. As a result, we can use the data on B(x)
to obtain a value for 〈b2

⊥
〉(x) using Eq. (33), as shown in

Fig. 24 (black data points and red bands). These data are
also compared with the result assuming the logarithmic
ansatz for B0

−(x) of Eq. (36), with parameter aB0

−

deter-

mined from the proton Dirac radius, according to Eq. (37).
One sees that within errors both determinations are per-
fectly compatible.

The upper plot Fig. 25 shows a 3-dimensional represen-
tation of the fit of Fig. 24. The bottom plot is an artistic
view of the tomographic quark content of the proton, with
the charge radius and the density of the quarks increas-
ing as smaller and smaller quark momentum fractions are
probed.

We have here extracted the x-dependence of the squared
radius of the quark distributions in the transverse plane,
demonstrating an increase of this radius with decreas-
ing value of the longitudinal quark momentum fraction x.
The hypotheses which have entered our work are the gen-
eral framework of QCD leading-twist and leading-order, a
maximum deviation of the values of the “true” GPDs by a
factor 5 w.r.t. to the VGG GPDs, and a model-dependent
ξ-dependent correction factor to convert the t-slope of the
singlet to the non-singlet distributions. We deem that the
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Fig. 24. x-dependence of 〈b2⊥〉 for quarks in the proton. The
data points correspond to the results obtained in this work
for B(x), as displayed in Fig. 21. They have been multiplied
by the correction factor B0

−/B in the x-range of the data, as
obtained from the black curve in Fig. 23. The total model un-
certainty originating from the red band for B(x) in Fig. 22,
and from the conversion of B0

− to B (using the black solid
curves in Fig. 23) is shown by the red band. The narrow purple
band shows the empirical result using the logarithmic ansatz
for B0

−(x) of Eqs. (36, 37) with the parameter aB0

−

determined

from the proton Dirac radius.

uncertainties associated to these assumptions are included
in our systematic error bars.

At this stage, we don’t carry out such study for the
axial charge radius because of the quite large error bars
that we obtained for H̃Im (Fig. 20), which make it dif-
ficult to extract a precise t-slope. Qualitatively, we can
nevertheless say that the t-slope is apparently quite flat
for H̃Im. This leads us to say that the axial charge of
the nucleon seems to be very concentrated, at least more
than the electric charge, in the core of the nucleon at the
currently probed ξ values.

Finally, we also provide a sketch of the information
which can be extracted from the CFF HRe of Eq. (2). For
this purpose we analyze this CFF using a fixed-t once-
subtracted dispersion relation, which can be written as:

HRe(ξ, t) = −∆(t) + P

∫ 1

0

dxH+(x, x, t)C
+(x, ξ),(38)

where ∆(t) is the subtraction constant, which is directly
related to the D-term form factor, see Ref. [9] for details.
One notices that the dispersive term, corresponding to
the second term on the rhs of Eq. (38), is in principle
calculable provided one has empirical information on the
CFF HIm over the whole x-range.

Fig. 25. Top panel: three-dimensional representation of the
function of Eq. (33) fitted to the data of Fig. 24, showing the
x-dependence of the proton’s transverse charge radius. Bottom
panel: artistic illustration of the corresponding rising quark
density and transverse extent as a function of x.

To illustrate the power of the dispersion relation, we
show an analysis in Fig. 26 showing the CFFs HIm (top
panels) and the CFFs HRe for three values of −t for which
CLAS data exist. We also show in the top panels two DD
GPD parameterizations which give a good description of
the CFF HRe data in the ξ-range of the CLAS data, but
differ in the ξ > 0.3 region, where no data exist at present.
The GPD parameterization we use exactly satisfies a sub-
tracted dispersion relation, and for the purpose of illus-
tration we set the a-priori-unknown subtraction constant
∆(t) equal to zero. The corresponding dispersive results
(second term of Eq. (38)) are shown on the bottom panel
of Fig. 26. We notice the importance of a large cover-
age in x when performing the dispersion integral, because
although the two GPD parameterizations are practically
coinciding for HIm in the ξ-range of the data, they show
a difference for HRe in the same ξ-range, which is due to
their differences in the large ξ region for HIm. We com-
pare our dispersive results for HRe with the direct extrac-
tion of the CFF HRe as performed in this work. Although
the current error bars on the direct extraction of HRe are
large due to systematics, we can observe that apart from
the lowest bin in −t, the trend of the ξ dependence which
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Fig. 26. Comparison of the ξ dependence of the imaginary parts (upper plots) and real parts (lower plots) of the CFF related
to the GPD H for the proton for three values of t. The curves in the upper plots are based on two DD parameterizations. Solid
curves: DD parameterization with bv = 1 and bs = 5; dashed curves: DD parameterization with bv = 5 and bs = 5. The curves
in the lower plots are the dispersive calculations of the real parts according to Eq. (38), based on the input of the imaginary
parts from the upper plots, and with subtraction function ∆(t) set equal to zero. Open squares: results of the CLAS σ and
∆σLU fit. Solid circles: results of the fit to CLAS σ, ∆σLU , AUL, and ALL data.

leads to a rise of HRe at smaller ξ is well reproduced.
Although our extraction method of HRe does not allow
to extract a subtraction constant at this stage, we can see
that this framework holds promise to extract∆(t) once the
systematic errors are reduced, through inclusion of data
which have a large sensitivity on HRe. We also see that
for the application of the dispersive framework it is impor-
tant to measure the integrand HIm over a wide range in ξ,
especially the ξ > 0.3 region, which will become possible
with the forthcoming JLab 12 GeV data.

6 Conclusion

In summary, we have analyzed in a GPD leading-twist and
leading-order theoretical framework the latest ep → epγ
unpolarized cross sections, difference of beam-polarized
cross sections, longitudinally polarized target single spin
asymmetries and beam-longitudinally polarized target dou-
ble spin asymmetries measured by the JLab Hall A and
CLAS collaborations. We have extensively tested and vali-
dated onMonte-Carlo pseudo-data a quasi model indepen-
dent algorithm aimed at extracting CFFs from ep → epγ
observables. Applied to real data, this code has allowed us
to extract constraints on the HIm, H̃Im and HRe CFFs.
From the t-dependence of the HIm at various xB values,
we have been able to derive the variation of the proton
charge radius as a function of the quark’s longitudinal
momentum, on the domain covered by the JLab experi-
ments.
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