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Abstract We propose new parameterizations for
the border and skewness functions appearing in the
description of 3D nucleon structure in the language
of Generalized Parton Distributions (GPDs). These
parameterizations are constructed in a way to fulfill
the basic properties of GPDs, like their reduction
to Parton Density Functions and Elastic Form Fac-
tors. They also rely on the power behavior of GPDs
in the x — 1 limit and the propounded analyticity
property of Mellin moments of GPDs. We evaluate
Compton Form Factors (CFFs), the sub-amplitudes
of the Deeply Virtual Compton Scattering (DVCS)
process, at the leading order and leading twist accu-
racy. We constrain the restricted number of free pa-
rameters of these new parameterizations in a global
CFF analysis of almost all existing proton DVCS
measurements. The fit is performed within the PAR-
TONS framework, being the modern tool for generic
GPD studies. A distinctive feature of this CFF fit
is the careful propagation of uncertainties based on
the replica method. The fit results genuinely permit
nucleon tomography and may give some insight into
the distribution of forces acting on partons.
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1 Introduction

Fifty years after the discovery of quarks at SLAC
[1,/2], understanding of how partons form a complex
object such as the nucleon still remains among the
main challenges of nuclear and high energy physics.
In the last twenty years we have witnessed a new
liveliness in the field of QCD approaches to this
problem due to the discovery of Generalized Par-
ton Distributions (GPDs) [3H7]. GPDs draw so much
attention because of the wealth of new information
they contain. Namely, GPDs allow for the so-called
nucleon tomography [8-10], which is used to study
a spacial distribution of partons in the plane per-
pendicular to the nucleon motion as a function of
parton longitudinal momenta. Before, positions and
longitudinal momenta of partons were studied with-
out any connection through other yet less complex
non-perturbative QCD objects: Elastic Form Factors
(EFFs) and Parton Distribution Functions (PDFs).
In addition, GPDs have another unique property,
namely they are connected to the QCD energy-
momentum tensor of the nucleon. This allows for an
evaluation of the contribution of orbital angular mo-
mentum of quarks to the nucleon spin through the
so-called Ji’s sum rule |41/5]. This energy-momentum



tensor may also help to define “mechanical proper-
ties” and describe the distribution of forces inside
the nucleon [11,/12].

It was recognized from the beginning that Deeply
Virtual Compton Scattering (DVCS) is one of the
cleanest probes of GPDs. The first measurements of
DVCS by HERMES (13| at DESY and by CLAS [14]
at JLab have proved the usability of GPD formalism
to interpret existing measurements, and have estab-
lished a global experimental campaign for GPDs. In-
deed, nowadays measurements of exclusive processes
are among the main goals of experimental programs
carried out worldwide by a new generation of experi-
ments — those already running, like Hall A and CLAS
at JLab upgraded to 12 GeV and COMPASS-II at
CERN, and those foreseen in the future, like Elec-
tron Ion Collider (EIC) and Large Hadron Electron
Collider (LHeC). Such a vivid experimental status is
complemented by a significant progress in the theo-
retical description of DVCS. In particular, such new
developments like NLO [15422], finite-t and mass (23]
corrections are now available. Except DVCS, a vari-
ety of other exclusive processes has been described
to provide access to GPDs, in particular: Timelike
Compton Scattering [24], Deeply Virtual Meson Pro-
duction [25], Heavy Vector Meson Production [26],
Double Deeply Virtual Compton Scattering [27],28],
two particles [29,/30] and neutrino induced exclusive
reactions [31H33]. For some of those processes experi-
mental data have been already collected, while other
processes are expected to be probed in the future.

The phenomenology of GPDs is much more in-
volved than that of EFFs and PDFs. It comes from
the fact that GPDs are functions of three variables,
entering observables in nontrivial convolutions with
coefficient functions. In addition, GPDs are sepa-
rately defined for each possible combination of par-
ton and nucleon helicities, resulting in a plenitude
of objects to be constrained at the same time. This
fully justifies the need for a global analysis, where
a variety of observables coming from experiments
covering complementary kinematic ranges is simul-
taneously analyzed. So far, such analyzes have been
done mainly for Compton Form Factors (CFFs), be-
ing DVCS sub-amplitudes and the most basic GPD-
sensitive quantities as one can unambiguously ex-
tract from the experimental data. Recent analyzes
include local fits [34}/35], where CFFs are indepen-
dently extracted in each available bin of data, and

global fits |36], where CFFs parameterizations are
constrained in the whole available phase-space. For a
review of DVCS phenomenology we direct the reader
to Ref. [37].

The aim of this analysis is the global extraction of
CFFs from the available proton DVCS data obtained
by Hall A, CLAS, HERMES and COMPASS exper-
iments. We use the fixed-t dispersion relation tech-
nique [38] for the evaluation of CFFs at the Leading
Order (LO) and Leading Twist (LT) accuracy. For
a given CFF, the dispersion relation together with
the analytical regularization techniques requires two
components: i) the GPD at £ = 0, and 4i) the skew-
ness ratio at x = £. Ansétze for those two quantities
proposed in our analysis accumulate information en-
coded in available PDF and EFF parameterizations,
and use theory developments like the x — 1 behav-
ior of GPDs [39]. They allow to determine a border
function [40,/41], being a GPD of reduced kinematic
dependency x = £, and the subtraction constant, di-
rectly related to the energy-momentum tensor of the
nucleon.

Our original approach allows to utilize many ba-
sic properties of GPDs at the level of CFFs fits.
We analyze PDFs, but also EFF and DVCS data,
that is, we combine information coming from (semi-
)inclusive, elastic and exclusive measurements. The
analysis is characterized by a careful propagation of
uncertainties coming from all those sources, which
we achieved with the replica method. Obtained re-
sults allow for nucleon tomography, while the ex-
tracted subtraction constant may give some insight
into the distribution of forces acting on partons in-
side the nucleon.

This work is done with PARTONS [42] that is the
open-source software framework for the phenomenol-
ogy of GPDs. It serves not only as the main com-
ponent of the fit machinery, but it is also utilized
to handle multithreading computations and MySQL
databases to store and retrieve experimental data.
PARTONS is also used for the purpose of compar-
ing existing models with the results of this analysis.

This paper is organized as follows. Section |2]is a
brief introduction of GPDs, DVCS and related ob-
servables, with details on the evaluation of CFF's
given in Sec. [3] Ansétze for the border and skewness
functions are introduced in Sec. @ Sections [B] and [6]
summarize our analyses of PDFs and EFFs, respec-
tively. DVCS data used in this work are specified in



Sec. [7} In Sec. [§] the propagation of uncertainties is
discussed, while the results are given in Sec. [0 In
Sec. [10| we summarize the content of this paper.

2 Theoretical framework

In this section a brief introduction to the GPD for-
malism is given. We emphasize the role of quark
GPDs, as only those contribute to DVCS at LO. A
deep understanding of the basic features of the con-
tributing GPDs is crucial for constructing param-
eterizations of CFFs. More involved tools, like nu-
cleon tomography, are important for the exploration
of the partonic structure of the proton. This section
also provides a foundation to DVCS description and
illustrates the construction of observables used in our
fits.

For brevity, we suppress in the following the de-
pendence on the factorization and renormalization
scales, ,u%,/ and p2%, which in this analysis are identi-
fied with the hard scale of the process Q2. A detailed
preface to the GPD formalism may be found in one
of available reviews [43H46].

Generalized Parton Distributions

In the following we use the convention for the light
cone vectors as in Ref. [44]. In the light cone gauge,
quark GPDs for a spin-1/2 hadron are defined by the
following matrix elements:
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Here, x is the average longitudinal momentum of the
active quark, £ = —AT/(2PT) is the skewness vari-
able and t = A? is the square of four-momentum
transfer to the hadron target, with the average
hadron momentum P obeying P2 = m? —t/4, where
m is the hadron mass. In this definition the usual
convention is used, where the plus-component refers
to the projection of any four-vector on a light-like
vector n.

With the help of the Dirac spinor bilinears:
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which are normalized so that u(p)y*u(p) = 2p*, one
can decompose F'? and F? into two pairs of chiral-
even GPDs:

Fq(:E? 67 t) =
1

F(h+Hq($7£7t> +6+Eq($7£7t)) ) (7)

Fi(z,6,t) =
1 - -~ o~

”ﬁ(h+Hq($7£,t) +6+Eq($7£at)) ) (8)
recognized as two “unpolarized” GPDs H? and EY,
and two “polarized” GPDs HY and E1.

The relation with one-dimensional PDFs and
EFFs is essential for the phenomenology of GPDs.
In the forward limit of £ = ¢ = 0, when both the
hadron and the active quark are untouched, certain
GPDs reduce to (one-dimensional) PDFs:

H(2,0,0) = q(z) , (9)
ﬁq(x,0,0) = Aq(z), (10)
where ¢(x) and Ag(z) are the unpolarized and po-
larized PDF's, respectively. No similar relations exist
for the GPDs E? and E? that decouple from the for-

ward limit. The relation to EFFs can be obtained by
integrating GPDs over the partonic variable x:

/_jdxHQ(x,g,t) = PO (11)
/_ 11 dzB(z, €)= FI(1) | (12)
/ do (2, ,t) = g4(1) . (13)
/ doB(z,6.1) = gh(t) (14)

where Fi!(t), Fi(t), g% (t) and g} (t) are the contri-
bution of the quark flavor ¢ to the Dirac, Pauli, axial
and pseudoscalar EFF's, respectively.



The integrals in Egs. — do not depend
on ¢ as a consequence of the Lorentz covariance of
GPDs. This feature is generally expressed by a non-
trivial property of GPDs known as polynomiality.
The property states, that any n-th Mellin moment
of a given GPD is always an even polynomial in £, of
order n + 1 for the unpolarized GPDs and of order
n for the polarized GPDs. In particular:

1
/ dr & H @, &, ) = ho™ (1) +
-1
EhL™(t) + ...+ mod(n, 2)E" ALY (), (15)
1
/ de 2" H(x, &, t) = h™ (t)+
-1

E2hL"(t) + ... + mod(n + 1,2)€"hI™(t) ,  (16)

where for n = 0 one has the relations given by Egs.
(@D- 4.

The correspondence of GPDs to PDFs and EFF's
presages a possibility of studying a spatial distribu-
tion of partons inside the nucleon. Indeed, the sub-
field of hadron structure studies known as nucleon
tomography allows one to extract the density of par-
tons carrying a given fraction of the nucleon longi-
tudinal momentum z as a function of the position
b, in the plane perpendicular to the nucleon mo-
tion. For unpolarized partons inside an unpolarized
nucleon this density is expressed by:

q(xz,by) =

d?A .
/ﬁ€_1bJ‘ AHq(a:,O,t = —AZ) ) (17)
/8

where we stress the condition ¢ = 0, meaning no
change of the longitudinal momentum of the active
parton. This density gets distorted when the nucleon
is polarized. This effect is described by adding extra
terms related to the GPDs H and E. The longitudi-
nal polarization of partons distributed in a longitu-
dinally polarized nucleon according to ¢(z,b, ) can
be studied with the Fourier transform of GPD H:

AQ(xa bJ_) =

d®PA A=
/ﬁe_ZbJ' AHq(x,(Lt = _A2) . (18)
7

A representation in the impact parameter space is
also possible for the GPD E:

el(z,b)) =
2

/%e*ibi AR (x,0,t = —A?) . (19)
A probabilistic interpretation of that result is pos-
sible if one changes the basis from longitudinal to
transverse polarization states of the nucleon [9]. In
such a case, e?(z,b)) can be related to a shift of
parton density generated in a transversely polarized
nucleon.

As indicated in Refs. [9,/47], b, is the distance
between the active parton and the point determined
by the positions of individual partons weighted by
their momenta, so that > a;b, ; = 0, where the
sum runs over all partons (the struck parton and all
spectators as well). This distance is different than
that between the struck parton and the spectator
system, which is given by:

b, |
dJ_ (3?) = m 5 (20)
and the parton distribution given as a function of d |
provides a better estimation of the transverse proton
size than ¢(z,b_ ).
Another useful quantity appearing in the context
of the nucleon tomography is the normalized second

moment of g(x, b ) distribution given by:

/d?bL b?% ¢(z,b)
(7)), (x) = . (21)
/ @b, q(z,b))

A similar quantity can be also defined for the dis-
tribution of longitudinal polarization to check how
broad this distribution is and how it corresponds to

(b7) (),

2. @ /deL b?% Ag(x,b,)
b1)ag(2) = .

(22)
/ b, Ag(r.by)

The need of having the proton size finite requires to
keep the mean squared distance between the active
parton and the spectator system,

(1), (@)

diqxziz,
(@) = 2

(23)



finite as well, also in the limit of z — 1. We will im-
pose it for the valance quarks as an extra constraint
on our Ansatz introduced in Sec. [l

To avoid a violation of the positivity of parton
densities in the impact parameter space, inequalities
studied in a series of papers [48H{55] must hold. In
particular one has the following inequalities, which
are proved to be useful to constrain parameteriza-
tions of GPDs:

Aq(eb.) < gl,bu). en
2 2
2 (ppre(e b)) < (aloba) + Aglab))
L

For completeness we also show Ji’s sum rule, al-
lowing for the evaluation of total angular momentum
carried by partons:

1
/ dz 2(H(z,£,0) + E9(z,£,0)) = 2J7 . (26)
-1
This feature can be used to investigate the nucleon
spin decomposition. We note however, that this anal-
ysis concentrates on GPDs H and H, and therefore
we will not attempt to give any estimation on J9.

Deeply Virtual Compton Scattering

A prominent role in the GPD phenomenology is
played by Deeply Virtual Compton Scattering:

I(k) + N(p) = LK)+ N®') +~(¢) , (27)

where [, N and ~ denote lepton, nucleon and pro-
duced photon, respectively; the four-vectors of these
states appear between parenthesis. Under specific
kinematic conditions, the factorization theorem al-
lows one to express the DVCS amplitude as a con-
volution of the hard scattering part, being calcu-
lable within the perturbative QCD approach, and
GPDs, describing an emission of parton from the
nucleon and its subsequent reabsorption, see Fig. [I}
The factorization applies in the Bjorken limit and for
—t/Q* < 1, where Q? = —(k — k’)? is the virtual-
ity of the virtual-photon mediating the exchange of
four-momentum between lepton and proton at Born
order.

The scattering is described by two angles, see Fig.
These are ¢, being the angle between the lepton
scattering and production planes, and ¢g, being the

Fig. 2: Kinematics of DVCS in the target rest frame.
The angle between the leptonic plane (spanned by
the incoming and outgoing lepton momenta) and the
production plane (spanned by the virtual and out-
going photon momenta) is denoted by ¢. The angle
between the leptonic plane and the nucleon polar-
ization vector is denoted by ¢g.

angle between the lepton scattering plane and the
direction of transversely polarized target.

An electromagnetic process called Bethe-Heitler
has the same initial and final states as DVCS. The
total amplitude for single photon production, T, is
then expressed by a sum of amplitudes for BH and
DVCS processes, which leads to:

IT? = [Teu+Toves|? = | Teul* +|Toves > +Z . (28)

where Z denotes the interference term. The cross sec-
tion for BH is calculable to a high degree of preci-
sion and therefore can be easily taken into account
in analyses of experimental data. The interference
term provides a complementary information to the
pure DVCS cross section, and in a certain kinematic



domain allows to access GPDs, even if |Tpvcsl? is
small.

The amplitudes Tpycs and Z may be expressed
by combinations of CFFs, which are convolutions of
GPDs with the hard scattering part of the interac-
tion. CFFs are the most basic quantities that one can
unambiguously extract from the experimental data.
The way of how CFFs enter the final amplitudes de-
pends on the beam and target helicity states, which
provides a welcome experimental filter to distinguish
between many possible CFFs and justifies the need
of measuring many observables. For brevity we skip
the formulas showing how Tpycs and Z depend on
CFFs. They can be found in Ref. [56]. The evalua-
tion of CFFs is discussed in Sec.

Observables

Let us denote a four-fold differential cross section for
a single photon production by d4af’c(x3j,t,Q2,¢),
where t € {«,—} and b € {«+,—} stand for the
target and beam helicities, respectively, and ¢ €
{+,—} stands for the beam charge. Here, zgj =
Q?/(2p- (p’ - p)) is the usual Bjorken variable. The
cross sections can be used to construct many observ-
ables, like cross sections itself, but also differences of
cross sections and asymmetries. For instance:

Aoy (o, 1, Q% 0) = 1/a(
(o (zpj t, Q% ) + d*o )™ (g, t, Q% 9)) +
(d40'::’_(33]3_]‘, t7 QQa ¢) + d40-(__)7_(xBja t? Qza ¢))

) (29)
Ad4UZU(xBj7 t7 Q27 ¢) =1 4(

(d40‘:’_ (xij ta Q27 (b) + d40’:>>’_(aij’ t’ QZ’ ¢)) -
(d40'<<:’7(.’£]3j, t, Q2, ¢) + d40'<:))7(xBj7 t» Q2a ¢))

) (30)

Ad4GZU(szat7Q27¢) (31)
d4O—T;U (xBj7 t, Q27 (b)

Here, the capital letters in the subscripts of observ-
ables names denote beam and target polarizations,
respectively, with U standing for “Unpolarized” and
L standing for “Longitudinally polarized”. We also
analyze data for “Transversely polarized targets”,
which are distinguished by the subscript T'. These
data are provided for two moments, sin(¢ — ¢g) and

AZU(xBj7t7 QQa (b) =

cos(¢ — ¢g), which are distinguished by the corre-
sponding labels in the superscripts, as for instance
in A=sn(0=95) (zp;, ¢, Q?, ¢). Furthermore there are
observables probing only the beam charge depen-
dency (subscript C'), and those combining cross sec-
tions measured with various beam charges to drop
either the DVCS or interference contribution (sub-
scripts I and DVCS, respectively).

A different group consists of Fourier-like observ-
ables related to specific modulations of the ¢ angle.
For instance:

AEYCOSO(xBja t7 QQ) =

1

o [ Ao t.0%6) (32)
AZl}Sin(ﬁ(xij L, QZ) =

~ [ a0y (ony. 1. Q% 0)sing (3)

Another observable used in this analysis is the
slope b(zgj, @?) of the t-distribution of the DVCS
cross section integrated over ¢. Within the LO for-
malism one can relate this observable to the trans-
verse extension of partons in the proton. However,
this requires the following assumptions, which are
expected to hold at small zp;: 7) dominance of the
imaginary part of CFF related to GPD H, ii) neg-
ligible skewness effect at £ = x, #4) exponential ¢
dependence of the GPD H at fixed x. Since the
DVCS t-distribution is usually not exactly exponen-
tial, in particular because GPDs for valence and
sea quarks may have different t-dependencies, we
evaluate b(zg;, Q) by probing DVCS t-distribution
in several equidistant points ranging from |t| =
0.1 GeV? to [t| = 0.5 GeV? and perform a linear
regression on the logarithmized results. The chosen
range of ¢ is typical for the existing measurements
of b(zgj, Q%) by COMPASS [57] and HERA experi-
ments [58-60].

3 Compton Form Factors
Imaginary part
At LO_the imaginary part of a given CFF G €

{7—[,5,71,5}, is proportional to the combination
of corresponding GPDs, G? € {H? E% H? E},



probed at z = &:
ImG(¢,t) = nGH(€,€,1)
=7y Gt (34)
q

Here, the sum runs over all quark flavors (we remind
that at LO gluons do not contribute to the DVCS
amplitude), e, is the electric charge of the quark
flavor ¢ in units of the positron charge e and G4(+)
is the singlet (C-even) combination of GPDs:

Gq(Jr) (l’,f,t) = Gq('ragzt) - Gq(_xa§7t) (35)
for G € {H, E} and:

G (2,6,) = GU(x,&,) + GI(~,&,1) (36)
for G € {ﬁ, E‘}

Real part

At LO the real part of a given CFF G can be eval-
uated by probing the corresponding GPD G in two
ways, that is, by integrating over one of two lines
laying in the (z,£)-plane. This duality is a conse-
quence of the polynomiality property required by the
Lorentz invariance of GPDs, see Sec.

The first evaluating method is the ”standard”
one, where x values of the involved GPDs are probed
at fixed &:

ReG(¢,t) =

P.V. /1 G (x,¢,1) (51 gi )dx (37)
0

Here, the quark propagators, 1/({—x) and 1/({+x),
enter in a combination given by the type of probed
GPDs. One has the difference (sum) for the unpo-
larized (polarized) GPDs.

The second evaluating method is known as fixed-
t dispersion relation [38] and it involves the integral
probing GPDs at £ = x:

ReG(£,t) =

1
P.V./ G (z, z,t) <§ L §_~1_
0

Again, the combination of quark propagators de-
pends here on the type of probed GPDs, exactly as
for Eq. (37). The additional term in Eq. (38), C(t)
is the so-called subtraction constant. It has the same

Ca(t)+

) dz . (38)

magnitude but the opposite sign for the CFFs H and
&, and it vanishes for the CFFs H and &:

Cu(t)=-Cg(t), (39)
Cy(t)=Cx(t)=0. (40)

After a quick examination of Egs. and ,
one may notice that the dispersion relation provides
a welcome relationship between the real and imagi-
nary parts of the same CFF. As a consequence how-
ever, at the LO approximation only GPDs in the
limited case of x = £ and the subtraction constant
can be probed.

Subtraction constant

The subtraction constant introduced in Eq. can
be related to D-term form factor, D?(t), in the fol-
lowing way:

Co(r) =2 /_ 11 qu(_z,z D4 = 4pi(t) (41)

Here, z = x/§ and D7(z,t) is the D-term [61]. It
was originally introduced to restore the polynomial-
ity property in the first models based on double dis-
tributions [62], but later it has been recognized as an
important element of the GPD phenomenology. Be-
cause the D-term vanishes outside the ERBL region
|z| < |€], it is not observed in the limit of £ = 0, and
it can be only studied in the ”skewed” case of £ # 0.

By expanding the D-term in terms of Gegen-
bauer polynomials,

Di(z,t) = (1 — 22 qu (2 (42)

odd

one can obtain the following series:

Z di(t (43)

odd

The first term of this expansion, df(t), is of a special
importance, as it enters the quark part of the QCD
energy momentum tensor and it provides an impor-
tant information on how strong forces are distributed
in the nucleon [63].



The subtraction constant can be evaluated by

comparing Egs. and :

Cé(t) =
1
P.V./O G1 ) (z,€,t) (fix —gi:C)dz—
1
P.V./O G (2, 1) <§ix_§—|l—x> dz , (44)

which can be evaluated without principal value pre-
scription, because the singularity at z = £ is inte-
grable in the expression:

1
C(t) = /0 (G (a.6.0) — "), 2.1))

1 1
- dx . 45
(=-75) @
Unfortunately, naively setting & = 0 in the above
formula results in a divergent integral. However, the
following moments:

Cg:,j (t) =
1
2/ (Gq<+)(x,x,t) — Gq<+)(a:,0,t)) zldr, (46)
0

are well defined for odd positive j and can be an-
alytically continued to j = —1, if G4 (z,x,t) —
Gq(+)(9c,0,t) has a proper analytic behavior, as de-
scribed in [64]. Such an analytical continuation can
be written as:

Cg:,j (t) =

1
2 / (Gq(+)(x,:z:,t)—Gq(Jr)(x,O,t)) Zidr, (47)
(0)

where we have introduced the analytic regularization
technique [40,64-66], given by the following prescrip-
tion:

P i)
ORI
P f(x) = f(0) —xf'(0) — ...
0 ’ g:.a+ij +

Uode , U dx
10 [ Smrrof S

0
£) = J(0) — ' 0) ~ .. _

/1f(
0 xa+1
@—%j&.. (48)

Here, one subtracts as many terms from the Taylor
expansion of f around zero as needed to make the
integral convergent, and one treats the compensating
terms to be convergent as well.

The analytic properties of the Mellin moments of
GPDs has been never proved to be a consequence of
general principles (neither it has never been proved
to contradict general principles) and because of that
can be only treated as a model assumption to be
a posteriori confronted with experimental data B
We will make such an assumption, and calculate the
subtraction constant as:

C&(t) = C& 1 (1)
B 2/1 G‘Z(JF)(:C, z,t) — Ga+) (z,0,t)
(

0) €

dx . (49)

The self-consistency of this approach will lead us to
relations and among the otherwise non-
related parameters of the fitting model.

4 Ansatz

We present in this study a global extraction of CFFs.
According to the terminology used within the GPD
community, “global” refers to constraining parame-
ters of an assumed CFF functional forms from vari-
ous measurements on a wide kinematic range. On the
contrary in local extractions, CFFs are extracted as
a set of disconnected values in bins of £ and ¢ (see for
instance Ref. [34,35]). We restrict our analysis to the
LO approximation and we neglect any contribution
coming from higher-twist effects and kinematic (tar-
get mass and finite-t) corrections. We adopt the de-
scription of cross sections in terms of DVCS and BH
amplitudes by Guichon and Vanderhaeghen, used for
phenomenology for instance in Refs. [71}72] and pub-
licly available in the open-source PARTONS frame-
work [42]. We point out, that the limited phase space
covered by available data, the precision of those data
and the plenitude of involved dependencies force us
to keep the parameterizations as simple as possible.
Otherwise significant correlations appear between

1 Analytical properties of the GPDs are the subject of
an ongoing discussion, see for instance [40L/41}|67H70]. In
particular Sec. 4 of [41] illustrates the relation between
analytic regularization and the analyticital properties of
GPD.
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fitted parameters, which somehow obscures the in-
terpretation of obtained results.

The Ansatz introduced in this section is explicitly
given for a factorization scale that one may recognize
as the reference scale Q2 at which the model is de-
fined. To include the factorization scale dependence
in our fit, that is for the comparison with experi-
mental data of Q2 # Q2, we consider the so-called
forward evolution, i.e. the one followed by PDF's.
The usage of the genuine GPD evolution equations
requires the knowledge of GPDs in the full range of
z independently on &, while in this analysis only the
GPDs at z = ¢ are considered. It was checked how-
ever with the GK GPD model [73H75], that the dif-
ference between the two evolution schemes is small
for z = &, unless Q% > Q3.

Decomposition into valence and sea contributions

In this work we use the decomposition scheme into
valence and sea contributions inspired by the double
distribution modeling of GPDs [62}|76}[77]. It gives
us:

G, &, 1) = GI(E,6,1) + G (£,&,1) (50)
for z =¢ and G € {H,E, H,E},
GI(=&, & 1) = —G™(§,&,1) (51)
for z = —¢ and G € {H, E}, and
G(=¢,&t) = G*(§,&,1) (52)

for = —¢ and G € {H, E}. Here, G% and G
are GPDs for valence and sea quarks, respectively.
With this decomposition one can replace Egs.
and by one equivalent expression:

Gq(+)(§7 3 t) = G (€,€,1) + 2G%< (£, &, 1) . (53)
CFFs H and H

Data used in this analysis are primarily sensitive to
the CFFs # and H. The LO and LT formalism al-
lows us to evaluate those CFF's with Eq. for the
imaginary part and with Eq. for the real part.
The subtraction constant, which appears in the dis-
persion relation, is evaluated with Eq. 7 making
use of the analytic regularization prescription given
by Eq. . All together, only the GPDs H? and HY
at £ = 0 and £ = x are needed.

For the GPDs HY and HY at ¢ = 0 we use an
Ansatz that is commonly used in phenomenological
analyses of GPDs:

G(x,0,t) = pdf(z) exp(f&(o)t) - (54)

Here, pdff,(z) is either a parameterization of the un-
polarized PDF, ¢(z), for the GPD HY or a parame-
terization of the polarized PDF, Aq(z), for the GPD
H4. The profile function, fé&(x), fixes the interplay
between the x and t variables, and it is given by:

fe(x) = AL log(1/2)+BE(1—2)*+CEL(1—-x)z , (55)

where AL, B and C, are free parameters to be con-
strained by experimental data. This form of f&(z)
allows to modify the classical A% log(1/xz) term by
BZ(1—z)? in the small z region and by C&(1—z)x in
the high x region. The terms proportional to B, and
C¢, were found to work best in the analysis of EFF
data (see Sec. @), where all combinations of (1 — x)*
and (1 — x)72* polynomials with 4,5,k = 1,...,5
were examined. We note that Af log(1/x) can not
be directly multiplied by a polynomial of x, which is
imposed by a need of keeping G¥(z,0,t)/z~(0+A&")
analytic at z = 0. To keep the distance between the
active quark and the spectator system finite, see Eq.
([23), we require to have CH™ = —A%™.

The profile function given by Eq. is more
flexible than that used in the GK model [73H75],
féax(x) = AL + Bllog(1/z), and in the VGG
model [76l78-80], f& vae(z) = AL log(1/z)(1 — ).
In particular, it should be flexible enough to take
into account a different interplay between the z and
t variables in the valence and sea regions if required
by experimental data. We note that f¢ pi(z) =
Allog(1/z)(1 — x)® + BL(1 — 2)® + C&(1 — z)%z
used in Refs. [4781] to fit EFF data can not be used
in this analysis because of the aforementioned issue
with the analyticity caused by AZ log(1/z)(1 — z)?
term.

For GPDs HY and HY at ¢ = x we utilize the
concept of skewness function:

Gi(x,,t)

g&(x,&,t) = G1(2,0,0) "

In our case:

Gl(z,,t) = GU(x,0,t) g& (2,2, , (57)
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where G9(x,0,t) is given by Eq. . We assume the
following form of the skewness function:

(li‘% (1+t(1 - 2)(b% + L log(1+2))) . (58)
where af, is a free parameter to be constrained by ex-
perimental data. Two other parameters, b, and cg,,
which govern the ¢-dependence of the skewness func-
tion, are fixed in a way to avoid singularities in the
evaluation of the subtraction constant. Namely, to
use the analytic regularization prescription at fixed
t one has:

a=080+AkLt, (59)
() :Gq(x,x,t) - G9(x,0,t) _

Gq(l',o,t) (g (fE,t) — 1)

QR &

; (60)

Q

where a and f(z) were introduced in Eq. and §
describes the behavior of PDFs at @ — 0:

q(z) ~ 277 . (61)

The singularities appear in the two first compen-
sating terms at a = 0 and 1 — a = 0, that is for
t=tF = —6/A} and t = 5° = (1 — §)/AE, re-
spectively. The problem does not emerge for higher
compensating terms as one typically has 0 < § < 1
for valence quarks and 1 < § < 2 for sea quarks. The
singularities are regularized by requiring f(0) = 0 at
tee and f'(0) = 0 at ¢5°, which is achieved by setting
b¢, and ¢, to:

AL (al, — 1)
q _ G\"G 2
bG aqG(; ) (6 )
q __ (a‘é — 1) 2Bq el -1
cG_pO(é—l)aéd(pO( ¢—C& -1+

Alpo (0 —1—a)+ Alp1), (63)

where pg, p1 and a are parameters of PDF parame-
terizations introduced in Sec. Bl

We stress that our Ansatz for the skewness func-
tion is explicitly defined at x = £ and it can not
be generalized to the case of x # £ without a non-
trivial modification. The form of the skewness func-
tion has been selected because of the following rea-
sons: i) for sufficiently small z and ¢, the skewness

function coincides with a constant value given by af,.
Such a behavior was predicted for HERA kinemat-
ics [82] and it was used in one of the first extrac-
tions of GPD information [83] from H1 data [84].
These data suggest af; ~ 1. 1) In the limit of z — 1
the skewness function is driven by 1/(1 — z2)2. This
form has been deduced from Ref. [39], where the
power behavior of GPDs in the limit of x — 1 was
studied within the pQCD approach. i) The sub-
dominant t-dependence in Eq. has been inspired
by the skewness function evaluated from GK [73H75]
and VGG [76,/78-80] GPD models, both being based
on the one component double distribution modeling
scheme [62]. In those models the t-dependence of the
skewness function is dominated by b, +cZ log(1 + z)
term. In our Ansatz we multiply it by (1 — z) to
avoid any t-dependence at x — 1, which is imposed
by Ref. [39], where it was shown that GPDs should
not depend on ¢ in this limit, regardless the value of

£
CFFs £ and &

For E and E we use a simplified treatment justified
by the poor sensitivity of the existing measurements
on the corresponding CFFs. Moreover, the forward
limit of those GPDs has not been measured, result-
ing in a need of fixing more parameters than for the
GPDs H and ﬁ, if an analog modeling was to be
adopted.

The modeling of the CFF £ is similar to that of
‘H and ?fl, i.e. it is based on the dispersion relation
with the subtraction constant of the opposite sign as
for H. We only consider the valence sector with the
forward limit of GPD E%= taken from Ref. [81]:

E'(Ival (Jj, 0, O) = eqval (x) —
K/QNQValx_aqval (1 - x)qual (]' + ’Yqval \/E) ’ (64)

where k, = 1.67 and kg = —2.03 are the magnetic
anomalous moments for up and down quarks, respec-
tively, and where 3, ,, = 4.65, B4,,, = 5.25, Yu,,, =4
and v4,,, = 0. The parameter o, ,, = aq,, = o is

fitted to EFF data as described in Sec. [fl The nor-
malization parameter:

) r(l—ag,)
N7l =1 e
qval ( + Banl) (F(2 - aqval + ﬁQVal)

(15 —a,,) )
va , 65
Yavar F(2-5 — Qg t+ ﬁq\,al) (69)

+
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ensures that:

/0 e et (2) = (66)

At £ = 0 the ¢-dependence is introduced analogously
as for the GPDs H and H, i.e.:

B (x,0,1) = e (z) exp(f5™ (z)t) , (67)

with fA*(z) given by Eq. (55)), where: A%, B
CH* are free parameters being fitted to EFF data as
described in Sec. @ It is assumed that A% = A%,

The skewness function wused to evaluate
E%a (g, x,t) from E%(z,0,t) is of the follow-
ing form:

B f)

qval — Qval _ ag
g™ (x, 2, t) = gp™ (x,t) = =22 f(0)
which again is deduced from Ref. [39]. Here, ap™ =
adEV‘“ = af™ =1 and any t-dependence is neglected.
An additional £-dependence coming from twist-three
and twist-four distribution amplitudes of the nucleon
is denoted by f(x). In the present analysis, where
only the leading twist is considered, it is assumed
that f(2)/£(0) = 1.

For the GPD E the shape of the corresponding
form factor is fixed by the GK model |73H75]. Only
the normalization parameter, Nz, is fitted to the
experimental data,

E(&,t) = Npéax(&,t) . (69)

(68)

Inequalities

We impose two extra constraints implied by the pos-
itivity of parton densities in the impact parameter
space. Namely, for the profile functions we require to
have:

fi) >0, (70)
@) > fi() (71)

being imposed by Eq. . The requirements are im-
plemented in a way to penalize combinations of fit-
ted parameters that do not hold the inequalities. It
is achieved by introducing a penalty to the x? func-
tion, which value is proportional to the maximum
violation of a given inequality. Such an implementa-
tion allows us to keep the x? function smooth. We
report that the inequalities given by Egs. and

have proved to be important to constrain pa-
rameterizations for the sea contribution to GPD H
and for the valence contribution to GPD H. It is
due to a low sensitivity to those contributions and a
limited phase space covered by the available data.

The inequality is not checked during the
minimization. Namely, by following Ref. [47] one can
obtain:

ed(z)? < 1
16m? fi(x)* ~ bi[

g(x)* (BT  bT )

@) p<2f}é(a:) 2f§1(x)>

A (B B

71 ()2 p<2f%(x) 2f,%(:c)>] 7

where for f%(x) = ff;(z) (condition not imposed in
this analysigs one can minimize right hand side over
b?, and get the strongest inequality:

q(x)? 9 3
o <o) (J50) () - 7p)

[g(x)? = Aq(2)?] | (73)

which is used for instance in Ref. [81]. To effec-
tively use the inequality in the minimization,
one should simultaneously fit all free parameters of
fir(@), f(2), fg(x) and e(z), which presently is not
the case, as we fit EFF and DVCS data separately. In
addition, for the GPDs H and E we consider only the
valence contribution, while the sea sector may have
a significant impact on in the range of small z;.
The validity of has however been checked a pos-
teriori, that is after the y2-minimization. The result
of this test shows that the inequality is violated for
most of the replicas for very small b%. To correct
this one should change the simplified Ansatz used
for GPD E and preferably fit its free parameters si-
multaneously with those for other GPDs, which is
beyond the scope of this analysis.

Approximations and summary

For the GPD H and valence quarks, all parameters
of the profile function given by Eq. are fitted

to EFF data, where we fixed Cp™ = —ARp™ and
C?I“‘ = —A‘;IV‘“. The unconstrained parameter in

the skewness function given by Eq. is fitted to
DVCS data, where it is assumed that o'y = a%* =
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afy. For sea quarks all parameters for both pro-

file and skewness functions are fitted to DVCS data.
Due to a limited sensitivity to the sea sector, we as-
sume the symmetry with respect to the change of
quark flavor, i.e. one has a%** = a%e* = a3, = %,
Alsen = Aes — A5 = A%< efe. Sea components
are not yet fully symmetric in our fit, as we do not
impose the flavor symmetry in PDFs, see Sec. |5} Due
to the lack of precision of axial EFF data, for the
GPD H all parameters for both profile and skewness
functions are fitted to DVCS data. As the contribu-
tion coming from Agse, is subdominant, we neglect
it entirely. For valence quarks, similarly to the GPD
H, we allow the profile function to be different for
Uyal and dy,), while for the skewness function one has
a}g"‘“ = a%* = ¢% For F and E only the valence
quarks are considered. For the GPD E all free pa-
rameters for both profile function and forward limit
given by Eq. are fitted to EFF data. For the
GPD E the normalization parameter N is fitted to
DVCS data. In total, we fit 9 parameters to EFF
data (see Tab.[2]) and 13 parameters are constrained
by DVCS data (see Tab. [f).

5 Analysis of PDFs

The analytic regularization prescription introduced
in Eq. requires the function ¢(z)/2~% to be non-
zero and analytic at x = 0. However, the numeric
evaluation of such a function and its derivatives near
x = 0 is difficult for typical PDF sets, like those pub-
lished by NNPDF [85] and CTEQ [86] groups, be-
cause of several numerical issues. Namely, interpola-
tions in PDF grids and extrapolations outside those
grids for small x, and a delicate cancellation of the
numerator and denominator of ¢(z)/z~% make the
evaluation numerically unstable. The problem can be
avoided with functional parameterizations of PDF's,
which can be used for a straightforward evaluation
of g()/x =% and its derivatives. In addition, such pa-
rameterizations allow for a significant reduction of
computation time and a precise determination of 4.

In this analysis the parameterization used for
both unpolarized and polarized PDF's reads:

pdfg(r, Q) = a9 3@
4

(1=2)*Y  9(pi i, Q)" (74)

=0

where:

2

9(p,¢, Q%) :p+qlog% (75)
Q0

describes the evolution in the renormalization scale,

recognized as @2, where Q3 = 2 GeV? can be iden-

tified as the initial scale. The parameterization con-

tains thirteen parameters,

0p,0q, 0, Di,qi, wherei=0,1,...,4, (76)
constrained for each quark flavor in a fit to
"NNPDF30_lo_as_0118_nf 3" set [85] for unpolarized
PDF's and to ’NNPDFpol11-100” set [87] for polar-
ized PDFs. These fits are performed for a grid of
nearly 10000 points equidistantly distributed in the
ranges of 107 < 2z < 0.9 and 1 GeV? < Q? <
20 GeVZ We have selected the sets by NNPDF
group as: i) they are provided for both ¢(z) and
Aq(z), ii) for g(x) they are provided at LO and three
active flavors, 74) they provide reliable estimation of
uncertainties extracted through the neural network
approach and the replica method. The PDF sets are
handled with LHAPDF interface [88].

A consistent fit to all replicas of used NNPDF
sets allows us to reproduce the original uncertainties
of PDFs. Figure [3| demonstrates the agreement be-
tween the original sets and our fits. The comparison
is satisfactory and in particular the central values
of fitted PDFs stay within the original uncertainty
bands.

6 Analysis of Dirac and Pauli Form Factors

Equations (11))-(14) link GPDs to EFFs, thus they
can be used to constrain GPDs from elastic data.
In this analysis we use this feature to constrain the
interplay between the x and ¢ variables for the GPDs
H and FE, however only for the valence quarks. More
precisely, we fix the parameters of fglv;lE (2) defined in
Eq. by using the Ansatz for H9!(x,0,t) given
in Eq. and that for E%el(z,0,t) given in Eq.
(67). We achieve this by studying proton, F?(t), and
neutron, F*(t), Dirac and Pauli form factors:

FP = e, F!" +eqFY,

F' = e, Fl 4+ e4F, wherei=1,2, (77)
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Fig. 3: Comparison between PDF sets by NNPDF group and parameterizations based on Eq. .
The upper (lower) row is for unpolarized (polarized) PDFs. For a given row, the left plot is for uya quarks,
while the right one is for dge, quarks. For a given figure, the black solid curve with the grey band representing
68% confidence level is for PDFs by NNPDF group, while the blue dashed curve with the hatched band is
for our fit. The curves are evaluated at Q% = 2 GeV2.

related to Sachs form factors as follows: with M3 = 0.71 GeV?2.
i gy R e the ratio of electric and normalized magnetic
M ! 2t’ form factors
t=F +——F wherei=np,n. (78) _ G+
E L ym2 2 Rz(t) _ ,uziE( ) . (81)
Sachs form factors can be used to define many ob- Gl (t)
servables, in particular: where i = p, n.
e the magnetic form factor normalized to both e the squared charge radius of neutron:
magnetic moment, 1, or fi,,, and dipole form fac- dG™ (¢
tor: 7"72112 =6 ;;( ) (82)
i t=0
i _ Gy(®) .
() = I ) (79) Experimental data for those observables and for
wiGp(t) an o
) 7.(t) come from the sources summarized in Table
where i = p,n and [[l For the selection of observables and related data
Gol(t) = 1 7 (80) we follow Ref. , which deals with the subject

(1—t/M3 )2 in great detail. In total, the used sample of data
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consists of 178 data points covering the range of
0.017 GeV? < |t| < 31.2 GeVZ2 Our fit to those
data ends for the central PDF replica with y?/ndf =
129.6/(178 — 9) ~ 0.77. The fit is repeated for all
other PDF replicas and for 100 instances of repli-
cated data to propagate the uncertainties of EFF
data to the analysis of CFFs. A single instance of
replicated data is generated with the following pre-
scription:

o A I g (o, AR £ AR, (83)

where v; is the measured value associated to the ex-
perimental point i. The total uncertainty, which is
also used to evaluate the x2 value in the fit to EFF
data, reads:

A = \Jla? + a7 84

where A$%" and AP® are statistical and systematic
uncertainties, respectively, both linked to the point <.
The generator of random numbers following a spec-
ified normal distribution, f(z|u, o), is denoted by
rnd;(u, o), where j is both the identifier of a given
replica and a unique random seed.

Table 1: EFF data used in this analysis. For R" we
use data coming from Ref. [81], which are evaluated
from those specified in this table.

Observable Reference No. of points
G?\LN 189] 54
RP [89H99| 54
Gy~ |100-104) 36
R™ |105H114] 21
an [115] 12
r2 o [116) 1

The final result consists of 201 replicas, where
each replica represents a possible realization of fitted
EFFs. Such a set of replicas can be used to estimate
mean values and uncertainties of the fitted parame-
ters, which we summarize in Table [2| Experimental
data are superimposed with the results of our fit in
Fig. 4] while distributions of quark EFFs are shown

in Fig.

Table 2: Values of parameters fitted to EFF data
together with estimated uncertainties coming from
those data and used PDF parameterizations.

Parameter Mean Data unc. Unpol. PDF unc.

A 0.99 0.01 0.08
B —0.50 0.02 0.14
AGg 0.70 0.02 0.08
By 0.47 0.07 0.24

Y 0.69 0.01 0.03
By —0.69 0.04 0.18
O —0.92 0.04 0.09
B —0.54 0.06 0.20
oG —0.73 0.06 0.22

7 DVCS data sets

Table [3] summarizes DVCS data used in this analy-
sis. Currently, only proton data are used, while those
sparse ones for neutron targets are foreseen to be in-
cluded in the future. We note, that recent Hall A
data [117,/118] published for unpolarized cross sec-
tions, d405U, are not used in the present analysis
since it was not possible to correctly describe them
with our fitting Ansatz, and their inclusion was caus-
ing a bias on the final extraction of GPD informa-
tion. This specific question will be addressed in a fu-
ture study. However we keep the recent Hall A data
for differences of cross sections, Ad40'ZU. In addition,
we skip all DVCS data published by HERA exper-
iments since they should be dominated by gluons,
and would probably lead to misleading conclusions
in our analysis which is adapted to the quark sector.
We will back to these problems in Sec. [0}

We apply two kinematic cuts on experimental
data:

Q% > 1.5 GeV?, (85)
—t/Q* < 0.25 . (86)

The purpose of those cuts is to restrict the phase-
space covered by experimental data to the deeply
virtual region where one can rely on the factoriza-
tion between GPDs and the hard scattering kernel.
The values of those cuts have been selected with the
correspondence to KM analysis [36], which may help
to compare results of both analyses in the future.
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Fig. 4: Elastic Form Factor data listed in Table |1| and fitted according to the text. The gray bands indicate
68% confidence level for uncertainties coming from EFF data. The corresponding bands for unpolarized
PDFs are indicated by the labels. For data points provided with systematic uncertainties, the inner bars
represent statistical uncertainties, while the outer ones are for the quadratic sum of statistical and systematic
uncertainties. Otherwise, statistical uncertainties are shown.
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Fig. 5: Parton Dirac and Pauli form factors obtained in this analysis. For further description see Fig.

8 Uncertainties

In this analysis all the uncertainties are evaluated
with the replica method, which for a sufficiently
large set of replicas allows one to accurately repro-
duce the probability distribution of a given prob-
lem. We distinguish four types of uncertainties on
the extracted parameterizations of CFFs. They ori-
gin from: 7) DVCS data, i) unpolarized PDFs, i)
polarized PDFs) and iv) EFFs. Each type of uncer-
tainty is estimated independently, as described in the
following.

The uncertainties coming from DVCS data are
estimated with a set of 100 instances of replicated
data. Similarly to the analysis of EFFs, see Sec. [0} a
single instance of replicated data is generated with

the following prescription:

replica j
vi £ Atot ZePliea

(rndj(vi, Aty + A‘;Ot) x rnd; (1, A7) . (87)

Here, v; is the measured value associated to the
experimental point 4, which comes with statistical,
At systematic, AP®, and normalization, APe™
uncertainties. The latter one appears whenever the
observable is sensitive to either beam or target polar-
ization, or to both of them. In such cases the polar-
ization describes the analyzing power for the extrac-
tion of those observable and the normalization un-
certainties are related to the measurement or other
determination of the involved polarizations. The to-
tal uncertainty, which is also used in the fit of CFF's
to evaluate the x2 value, is evaluated according to
Eq. .

The uncertainties coming from unpolarized and
polarized PDFs are estimated by propagating our
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Table 3:

DVCS data used in this analysis.

No. Collab. Year  Ref. Observable Kinematic — No. of points
dependence used / all
1 HERMES 2001  [13] Afy @ 10 / 10
2 2006 (119 AZSe i= t 4/4
3 2008  [120] AL i=0,1 TB; 18 / 24
AR g
AGHtg=es) cos f‘i’ i=0,1
A?]ojs_‘sib—qﬁé) sin i¢ i=1
4 2009 [121] ALY i=1,2 TBj 35 / 42
A??J?S\_/cs i=1
ALS e i=0,1,2,3
5 2010  [122] Afpinee i=1,2,3 zB;j 18 / 24
Afyeoste i=0,1,2
6 2011 [123] ASE@ogs)cosid 5 TB; 24 / 32
LT,DVCS ) Bj
sin(¢—¢g) sin i .
ASLTEDVCSS) ) i=1
ARl m @) eosio 2 0,1,2
Ail;(}b_‘bs) sin i¢ i = 1’2
7 2012 [124) AL i=1,2 TBj 35 / 42
ASLHIIJ:LS\_/CS i=1
AP i=0,1,2,3
8 CLAS 2001 [14] Appmee i=1,2 — 0/2
9 2006 [125| Ay finie i=1,2 — 2/2
10 2008  [126] Aty 1) 283 / 737
11 2009 [127] ALy ¢ 22 / 33
12 2015 |128] ALy, App, ALL ¢ 311 / 497
13 2015 [129) diog, ¢ 1333 / 1933
14 Hall A 2015 [117) Ad*or, ¢ 228 / 228
15 2017  [118] Adtor, ) 276 / 358
16 COMPASS 2018  [57] b — 1/1
SUM: 2600 / 3970
parameterizations of replicas by NNPDF group, see 9 Results
Sec. ol Namely, we repeat our fit to DVCS data sep-
arately for each PDF replica, that is 100 times for ~ Performance

unpolarized PDFs and 100 times for polarized PDF's.
A similar method is used to evaluate the uncertain-
ties coming from EFF parameterizations. We repeat
our fit to DVCS data for each replica obtained in the
analysis of EFF data, see Sec. [6]

As a result of this analysis we obtain a set of 401
replicas, where each of them represents a possible
realization of CFF parameterizations. For a given
kinematic point the mean and uncertainties can be
then estimated by taking the mean and the standard
deviation of values evaluated from those replicas.

For the central PDF and EFF replicas the minimum
value of the x? function returned by the minimiza-
tion routine (Minuit [130] ported to ROOT [131])
is 2346.3 for 2600 experimental points and 13 free
parameters, which gives the reduced value equal to
2346.3/(2600 — 13) ~ 0.91. The values of x? function
per experimental data set are summarized in Table
[ In general the agreement between our fit and ex-
perimental data is quite good. The only exception is
for the COMPASS point, on which we will comment
in the following.

In this analysis a set of 401 replicas is obtained
that can be used to estimate mean values and uncer-
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tainties of the fitted parameters. We summarize this
in Table |5 where we also indicate ranges in which
the minimization routine was allowed to vary the fit-
ted parameters. As one can see from this table, the
parameter B* is found to be at the lower limit of
the allowed range. Without this limit the fit would
end with a much smaller value of Bf;** compensated
by a higher value of A%, which we consider to be
unphysical. The problem with B is a consequence
of the sparse data covering low-zp; region, but it may
be also a sign of the breaking of the LO description
in the range dominated by sea quarks and gluons.

In addition to the fitted parameters, in Table
we also show typical values of by, and ¢f, evaluated
from Egs. and , respectively. These values
indicate that the t-dependence in the skewness func-
tion is subdominant, which we consider to be an ex-
pected feature.

Figures[6H9] provide a straightforward comparison
between the results of our analysis and some selected
data sets coming from various experiments. These
plots can be used in particular to estimate the effect
of PDF and EFF uncertainties, which one can not
judge from Table [4]

In Fig. [7| the comparison for both d*oy;;; and
Ad*o;,; data coming from Hall A is shown, how-
ever one should keep in mind that only those for
Ad*op,; are used in this analysis. In general the
agreement between the unpolarized cross section
data published by Hall A [117,/118] and our fit is
poor, which can be qualitatively expressed be the
reduced value of x? function evaluated for those
data equal to 5144.4/594 =~ 8.66. The agreement
is better for ¢ ~ 0, where for 0 < ¢ < 45° and
315° < ¢ < 360° one has 232.4/132 &~ 1.76. We note
that the KM model also has a problem to describe
Hall A unpolarized cross section data at LT and L.O
accuracy [36], and it was suggested [118] that in-
cluding HT and NLO corrections may be needed to
improve the quality of the fit.

Figure [9] demonstrates the comparison between
results of our fit and experimental data for the t¢-
slope b coming from the measurements by COM-
PASS [57], ZEUS [59] and H1 [58,60] experiments.
We remind that for this observable only the COM-
PASS point is used in this analysis. As one can judge
from the figure, the agreement between our fit and
experimental data is lost for small xp;j, i.e. for the
range where sea quarks and gluons dominate. We

only leave the COMPASS point to have a cover-
age in the intermediate range of xpj, where valence
quarks may still contribute significantly. While it is
tempting to improve the agreement for small zg; by
adding extra terms to f&**(z), like those propor-
tional to (1 —x)™ with large n, we refrain from doing
that, treating the disagreement as a possible mani-
festation of NLO effects. The included comparison
with GK [73H75] and VGG [76}|78-80] GPD mod-
els shows that GK manages to reproduce the trend
dictated by the HERA data reasonably well. This is
not a full surprise, as this model was constrained in
the low-zg; region, however by Deeply Virtual Me-
son Production (DVMP) data. It is worth pointing
out, that the lowest possible order of contribution to
DVMP starts with ag, while for DVCS one has o{.
It is beyond the scope of this paper, but in the fu-
ture multichannel analyses of exclusive processes the
issue of using the same order of pQCD calculations
may become important.

Table 4: Values of the x? function per data set. For
a given data set, cf Table [3| given are: x2? value,
the number of experimental points n, and the ratio
between these two numbers.

No. Collab. Year Ref. x2 n x%/n
1 HERMES 2001 [13] 9.8 10 0.98
2 2006 |119] 2.9 4 0.72
3 2008 [120] 24.2 18  1.35
4 2009 [121] 40.1 35 1.15
5 2010 [122] 403 18  2.24
6 2011 [123] 14.5 24 0.60
7 2012 [124] 254 35  0.73
8 CLAS 2001 [14 — 0  —
9 2006 [125] 0.9 2 047
10 2008 |126] 371.1 283 1.31
11 2009 |127] 36.4 22 1.66
12 2015 [128] 351.4 311 1.13
13 2015 |129] 937.9 1333 0.70
14 Hall A 2015 |117] 220.2 228 0.97
15 2017 [118] 258.8 276  0.94

16 COMPASS 2018 |57] 10.7 1 10.67

Subtraction constant

The subtraction constant obtained in this analysis
is shown as a function of ¢ at Q2 = 2 GeV? and as
a function of Q2 at ¢t = 0 in Fig. One may ob-
serve a large uncertainty coming from PDF param-
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Table 5: Values of the parameters fitted to DVCS data together with estimated uncertainties coming from
those data, (un-)polarized PDFs and EFFs. Two last columns indicate the limits in which the minimization
routine was allowed to vary the corresponding parameters. In addition, exemplary values of b, and ¢},

parameters evaluated at Q2 = 2 GeV? from Egs. and are given.

Parameter ~Mean Data unc. Unpol. PDF unc. Pol. PDF unc. EFF unc. Limit
min max
al 0.81 0.04 0.17 0.02 < 0.01 02 2.0
e 0.99 0.01 0.02 <0.01 <0.01 02 20
ailﬁ 1.03 0.04 0.30 0.24 0.01 0.2 2.0
Nz —0.46 0.10 0.09 0.06 0.01 —10 10
Alsen 2.56 0.23 0.30 0.09 0.03 01 10
Ben -5 at the limit -5 20
Olzen 34 27 49 14 3 -5 200
Al 0.77 0.12 0.30 0.23 0.07 01 10
B —0.02 0.26 0.75 0.24 0.15 -5 20
ol —0.92 0.07 0.44 0.24 0.04 -5 200
Ag;l 0.64 0.24 0.30 0.28 0.05 01 10
Bgva‘ —1.19 0.45 0.91 0.98 0.22 -5 20
O —0.55 0.24 0.26 0.27 0.10 -5 200
bl —0.36 0.10 0.15 0.04 0.01 - —
¢lhar 11.2 3.1 2.7 1.1 0.3 - —
bfses —0.222 0.062 0.090 0.022 0.006 - —
che 14 4 15 1 1 - —

eterizations, however in general small values of the
subtraction constant are preferred. We also observe
a general trend for the saturation of the subtraction
constant at large values of Q2.

Compton Form Factors

The CFFs obtained in this analysis are shown as
a function of & for the exemplary kinematics of
t =—0.3 GeV? and Q2 = 2 GeV? in Figs. In
complement of our results, we also show the curves
evaluated at the same kinematics for the GK [73H75|
and VGG [76,/78-80] models. In general, VGG is
closer to the results of our fit, which is expected,
as this model was primarily designed to reproduce
DVCS data in the valence region. We conclude that
both models overestimate the imaginary part of the
CFF H, which for VGG is compatible with the con-
clusions of Ref. [34], where local fits to recent JLab
DVCS data are reported.

Nucleon tomography

Exemplary distributions of u(x, b, ) and Aty (z,b.)
observables corresponding to Egs. and , re-
spectively, are shown in Fig. [I5] These plots illus-
trate how parton densities (longitudinal polarization
of those partons) are distributed inside the unpo-
larized (longitudinally polarized) nucleon, however
without the possibility of showing the correspond-
ing uncertainties.

This difficulty can be overcome by showing
the normalized second moments of ¢(z,b,) and
Agyal(z, by ) distributions, see Egs. and
and Figs. [I6]and [T7] respectively. One may note that
(6%),(x) = 0 when & — 1, which is expected, as in
this limit the position of the active quark is equiva-
lent to the center of the coordinate system in which
the impact parameter is defined. The corresponding
distributions illustrating the mean squared distance
between the active quark and the spectator system,
see Eq. 7 are shown in Fig. In our studies
(d%), is finite when = — 1, which we consider to
be a welcome feature imposed by our Ansatz. We
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Fig. 6: Comparison between the results of this analysis, some selected GPD models and experimental data
published by CLAS in Refs. [128,/129] for d*oy; at zp; = 0.244, t = —0.15 GeV? and Q? = 1.79 GeV?
(left) and for A, at xp; = 0.2569, t = —0.23 GeV?, Q2 = 2.019 GeV? (right). The solid curves and the
gray bands surrounding those curves correspond to the results of this analysis and 68% confidence levels for
the uncertainties coming from DVCS data, respectively. The magnitudes of the additional uncertainties to
the plotted observables and coming from unpolarized PDFs, polarized PDFs and EFFs, can be separately
estimated from the bands located below the curves and labeled with “PDF unc.”, “Pol. PDF unc.” and “EFF
unc.”, respectively. Each of those four uncertainties is evaluated in the analysis of the corresponding set of
replicas. The inner bars on data points are for statistical uncertainties, while those outer ones are for the
quadratic sum of statistical and systematic uncertainties. The dotted curve is for the GK GPD model [73H75],
while the dashed one is for VGG [76L/78-80]. The curves are evaluated at the kinematics of experimental
data.
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Fig. 7: Comparison between the results of this analysis, some selected GPD models and experimental data
published by Hall A in Ref. [117] for d*oy,; (left) and Ad*o,, (right) at xp; = 0.392, t = —0.233 GeV? and
Q? = 2.054 GeV?. For further description see Fig. @
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also study a possible difference between (b%), (2)
and (b?) .., (), see Fig. This plot suggests that
the distribution of uy, (z, b ) is narrower (broader)
than dys1(z, b, ) in the region of high (low) . A firm
conclusion however is not possible at this moment
because of the large uncertainties.

10 Summary

In this paper we proposed new parameterizations for
the border and skewness functions. Together with
the assumption about the analyticity properties of
the Mellin moments of GPDs, those two ingredients
allowed the evaluation of DVCS CFFs with the LO
and LT accuracy. The evaluation was done with the
dispersion relation technique and it included a deter-
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mination of the DVCS subtraction constant, which
is related to the QCD energy-momentum tensor.

In order to build and constrain our parameteri-
zations we utilized many basic properties of GPDs,
like their relation to PDFs and EFF's, the positivity
bounds, the power behavior in the limit of x — 1
and even the polynomiality property allowing the
evaluation of the subtraction constant by compar-
ing two equivalent ways of CFF computation. Our
parameterizations provide a genuine access to GPDs
at (x,0,t) kinematics and therefore they can be used
for nucleon tomography.

We performed the analysis of PDF's and obtained
a set of functional parameterizations allowing the
reproduction of original values and uncertainties. A
small number of free parameters appearing in our
approach was constrained by EFF and DVCS data.
We considered all proton DVCS data, however not
all of them entered the final analysis because of the
used kinematic cuts and the initial data exploration.
Our work was done within the PARTONS project
that provides a modern platform for the study of
GPDs and related topics.
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The quality of our fits is quite good. The fit to
EFF data returns 2 = 129.6 for 178 data points
and 9 free parameters, while that to DVCS data re-
turns x? = 2346.3 for 2600 data points and 13 free
parameters. The good performance proves that our
parameterizations, including the assumed analytic-
ity property, are not contradicted by the used ex-
perimental data. We consider the unsurprising dis-
crepancy between our results and the HERA data as
a possible manifestation of gluon effects, and the sur-
prising discrepancy with unpolarized cross sections

published by Hall A as a possible need for higher
twist or kinematic corrections.

Our analysis also favors small values of the sub-
traction constant. We extract the distributions of
q(z,b) and Agya(z, b)) and we study the prop-
erties of those distributions.

This analysis is characterized by a careful prop-
agation of uncertainties coming from PDFs parame-
terizations, EFF and DVCS data, which we achieved
by using the replica method. The first successful
step towards the reduction of model uncertainties
has been done already by selecting PDFs parame-
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Fig. 15: Position of up quarks in an unpolarized proton (upper plot) and longitudinal polarization of those
quarks in a longitudinally polarized proton (lower plot) as a function of the longitudinal momentum fraction
x. For the lower plot only the valence contribution is shown.

terizations based on the neural network technique.
We plan to extend the usage of neural networks to
other sectors of our future analyses for further re-
duction of model uncertainties.
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