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Abstract We propose new parameterizations for

the border and skewness functions appearing in the

description of 3D nucleon structure in the language

of Generalized Parton Distributions (GPDs). These

parameterizations are constructed in a way to fulfill

the basic properties of GPDs, like their reduction

to Parton Density Functions and Elastic Form Fac-

tors. They also rely on the power behavior of GPDs

in the x → 1 limit and the propounded analyticity

property of Mellin moments of GPDs. We evaluate

Compton Form Factors (CFFs), the sub-amplitudes

of the Deeply Virtual Compton Scattering (DVCS)

process, at the leading order and leading twist accu-

racy. We constrain the restricted number of free pa-

rameters of these new parameterizations in a global

CFF analysis of almost all existing proton DVCS

measurements. The fit is performed within the PAR-

TONS framework, being the modern tool for generic

GPD studies. A distinctive feature of this CFF fit

is the careful propagation of uncertainties based on

the replica method. The fit results genuinely permit

nucleon tomography and may give some insight into

the distribution of forces acting on partons.

Keywords Nucleon Structure · Generalized

Parton Distribution · GPD · Skewness Function ·
Border Function · Analyticity · Power Behavior ·
Deeply Virtual Compton Scattering · DVCS ·

ae-mail: herve.moutarde@cea.fr
be-mail: pawel.sznajder@ncbj.gov.pl
ce-mail: jakub.wagner@ncbj.gov.pl

PARTONS Framework · Global Fit · Nucleon

Tomography · Subtraction Constant

PACS 12.38.-t · 13.60.-r · 13.60.Fz · 14.20.-c

1 Introduction

Fifty years after the discovery of quarks at SLAC

[1,2], understanding of how partons form a complex

object such as the nucleon still remains among the

main challenges of nuclear and high energy physics.

In the last twenty years we have witnessed a new

liveliness in the field of QCD approaches to this

problem due to the discovery of Generalized Par-

ton Distributions (GPDs) [3–7]. GPDs draw so much

attention because of the wealth of new information

they contain. Namely, GPDs allow for the so-called

nucleon tomography [8–10], which is used to study

a spacial distribution of partons in the plane per-

pendicular to the nucleon motion as a function of

parton longitudinal momenta. Before, positions and

longitudinal momenta of partons were studied with-

out any connection through other yet less complex

non-perturbative QCD objects: Elastic Form Factors

(EFFs) and Parton Distribution Functions (PDFs).

In addition, GPDs have another unique property,

namely they are connected to the QCD energy-

momentum tensor of the nucleon. This allows for an

evaluation of the contribution of orbital angular mo-

mentum of quarks to the nucleon spin through the

so-called Ji’s sum rule [4,5]. This energy-momentum

ar
X

iv
:1

80
7.

07
62

0v
2 

 [
he

p-
ph

] 
 1

0 
N

ov
 2

01
8



2

tensor may also help to define “mechanical proper-

ties” and describe the distribution of forces inside

the nucleon [11,12].

It was recognized from the beginning that Deeply

Virtual Compton Scattering (DVCS) is one of the

cleanest probes of GPDs. The first measurements of

DVCS by HERMES [13] at DESY and by CLAS [14]

at JLab have proved the usability of GPD formalism

to interpret existing measurements, and have estab-

lished a global experimental campaign for GPDs. In-

deed, nowadays measurements of exclusive processes

are among the main goals of experimental programs

carried out worldwide by a new generation of experi-

ments – those already running, like Hall A and CLAS

at JLab upgraded to 12 GeV and COMPASS-II at

CERN, and those foreseen in the future, like Elec-

tron Ion Collider (EIC) and Large Hadron Electron

Collider (LHeC). Such a vivid experimental status is

complemented by a significant progress in the theo-

retical description of DVCS. In particular, such new

developments like NLO [15–22], finite-t and mass [23]

corrections are now available. Except DVCS, a vari-

ety of other exclusive processes has been described

to provide access to GPDs, in particular: Timelike

Compton Scattering [24], Deeply Virtual Meson Pro-

duction [25], Heavy Vector Meson Production [26],

Double Deeply Virtual Compton Scattering [27,28],

two particles [29,30] and neutrino induced exclusive

reactions [31–33]. For some of those processes experi-

mental data have been already collected, while other

processes are expected to be probed in the future.

The phenomenology of GPDs is much more in-

volved than that of EFFs and PDFs. It comes from

the fact that GPDs are functions of three variables,

entering observables in nontrivial convolutions with

coefficient functions. In addition, GPDs are sepa-

rately defined for each possible combination of par-

ton and nucleon helicities, resulting in a plenitude

of objects to be constrained at the same time. This

fully justifies the need for a global analysis, where

a variety of observables coming from experiments

covering complementary kinematic ranges is simul-

taneously analyzed. So far, such analyzes have been

done mainly for Compton Form Factors (CFFs), be-

ing DVCS sub-amplitudes and the most basic GPD-

sensitive quantities as one can unambiguously ex-

tract from the experimental data. Recent analyzes

include local fits [34, 35], where CFFs are indepen-

dently extracted in each available bin of data, and

global fits [36], where CFFs parameterizations are

constrained in the whole available phase-space. For a

review of DVCS phenomenology we direct the reader

to Ref. [37].

The aim of this analysis is the global extraction of

CFFs from the available proton DVCS data obtained

by Hall A, CLAS, HERMES and COMPASS exper-

iments. We use the fixed-t dispersion relation tech-

nique [38] for the evaluation of CFFs at the Leading

Order (LO) and Leading Twist (LT) accuracy. For

a given CFF, the dispersion relation together with

the analytical regularization techniques requires two

components: i) the GPD at ξ = 0, and ii) the skew-

ness ratio at x = ξ. Ansätze for those two quantities

proposed in our analysis accumulate information en-

coded in available PDF and EFF parameterizations,

and use theory developments like the x → 1 behav-

ior of GPDs [39]. They allow to determine a border

function [40,41], being a GPD of reduced kinematic

dependency x = ξ, and the subtraction constant, di-

rectly related to the energy-momentum tensor of the

nucleon.

Our original approach allows to utilize many ba-

sic properties of GPDs at the level of CFFs fits.

We analyze PDFs, but also EFF and DVCS data,

that is, we combine information coming from (semi-

)inclusive, elastic and exclusive measurements. The

analysis is characterized by a careful propagation of

uncertainties coming from all those sources, which

we achieved with the replica method. Obtained re-

sults allow for nucleon tomography, while the ex-

tracted subtraction constant may give some insight

into the distribution of forces acting on partons in-

side the nucleon.

This work is done with PARTONS [42] that is the

open-source software framework for the phenomenol-

ogy of GPDs. It serves not only as the main com-

ponent of the fit machinery, but it is also utilized

to handle multithreading computations and MySQL

databases to store and retrieve experimental data.

PARTONS is also used for the purpose of compar-

ing existing models with the results of this analysis.

This paper is organized as follows. Section 2 is a

brief introduction of GPDs, DVCS and related ob-

servables, with details on the evaluation of CFFs

given in Sec. 3. Ansätze for the border and skewness

functions are introduced in Sec. 4. Sections 5 and 6

summarize our analyses of PDFs and EFFs, respec-

tively. DVCS data used in this work are specified in
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Sec. 7. In Sec. 8 the propagation of uncertainties is

discussed, while the results are given in Sec. 9. In

Sec. 10 we summarize the content of this paper.

2 Theoretical framework

In this section a brief introduction to the GPD for-

malism is given. We emphasize the role of quark

GPDs, as only those contribute to DVCS at LO. A

deep understanding of the basic features of the con-

tributing GPDs is crucial for constructing param-

eterizations of CFFs. More involved tools, like nu-

cleon tomography, are important for the exploration

of the partonic structure of the proton. This section

also provides a foundation to DVCS description and

illustrates the construction of observables used in our

fits.

For brevity, we suppress in the following the de-

pendence on the factorization and renormalization

scales, µ2
R and µ2

F , which in this analysis are identi-

fied with the hard scale of the process Q2. A detailed

preface to the GPD formalism may be found in one

of available reviews [43–46].

Generalized Parton Distributions

In the following we use the convention for the light

cone vectors as in Ref. [44]. In the light cone gauge,

quark GPDs for a spin-1/2 hadron are defined by the

following matrix elements:

F q(x, ξ, t) =
1

2

∫
dz−

2π
eixP

+z−×〈
P +

∆

2

∣∣∣∣ q̄ (−z2) γ+q (z2)
∣∣∣∣P − ∆

2

〉 ∣∣∣
z+=0
z⊥=0

, (1)

F̃ q(x, ξ, t) =
1

2

∫
dz−

2π
eixP

+z−×〈
P +

∆

2

∣∣∣∣ q̄ (−z2) γ+γ5q (z2)
∣∣∣∣P − ∆

2

〉 ∣∣∣
z+=0
z⊥=0

. (2)

Here, x is the average longitudinal momentum of the

active quark, ξ = −∆+/(2P+) is the skewness vari-

able and t = ∆2 is the square of four-momentum

transfer to the hadron target, with the average

hadron momentum P obeying P 2 = m2− t/4, where

m is the hadron mass. In this definition the usual

convention is used, where the plus-component refers

to the projection of any four-vector on a light-like

vector n.

With the help of the Dirac spinor bilinears:

hµ = ū

(
P +

∆

2

)
γµu

(
P − ∆

2

)
, (3)

eµ =
i∆ν

2m
ū

(
P +

∆

2

)
σµνu

(
P − ∆

2

)
, (4)

h̃µ = ū

(
P +

∆

2

)
γµγ5u

(
P − ∆

2

)
, (5)

ẽµ =
∆µ

2m
ū

(
P +

∆

2

)
γ5u

(
P − ∆

2

)
, (6)

which are normalized so that ū(p)γµu(p) = 2pµ, one

can decompose F q and F̃ q into two pairs of chiral-

even GPDs:

F q(x, ξ, t) =

1

2P+

(
h+Hq(x, ξ, t) + e+Eq(x, ξ, t)

)
, (7)

F̃ q(x, ξ, t) =

1

2P+

(
h̃+H̃q(x, ξ, t) + ẽ+Ẽq(x, ξ, t)

)
, (8)

recognized as two “unpolarized” GPDs Hq and Eq,

and two “polarized” GPDs H̃q and Ẽq.

The relation with one-dimensional PDFs and

EFFs is essential for the phenomenology of GPDs.

In the forward limit of ξ = t = 0, when both the

hadron and the active quark are untouched, certain

GPDs reduce to (one-dimensional) PDFs:

Hq(x, 0, 0) ≡ q(x) , (9)

H̃q(x, 0, 0) ≡ ∆q(x) , (10)

where q(x) and ∆q(x) are the unpolarized and po-

larized PDFs, respectively. No similar relations exist

for the GPDs Eq and Ẽq that decouple from the for-

ward limit. The relation to EFFs can be obtained by

integrating GPDs over the partonic variable x:∫ 1

−1
dxHq(x, ξ, t) ≡ F q1 (t) , (11)∫ 1

−1
dxEq(x, ξ, t) ≡ F q2 (t) , (12)∫ 1

−1
dxH̃q(x, ξ, t) ≡ gqA(t) , (13)∫ 1

−1
dxẼq(x, ξ, t) ≡ gqP (t) , (14)

where F q1 (t), F q2 (t), gqA(t) and gqP (t) are the contri-

bution of the quark flavor q to the Dirac, Pauli, axial

and pseudoscalar EFFs, respectively.
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The integrals in Eqs. (11)-(14) do not depend

on ξ as a consequence of the Lorentz covariance of

GPDs. This feature is generally expressed by a non-

trivial property of GPDs known as polynomiality.

The property states, that any n-th Mellin moment

of a given GPD is always an even polynomial in ξ, of

order n + 1 for the unpolarized GPDs and of order

n for the polarized GPDs. In particular:

∫ 1

−1
dx xnHq(x, ξ, t) = hq,n0 (t)+

ξ2hq,n2 (t) + . . .+ mod(n, 2)ξn+1hq,nn+1(t) , (15)∫ 1

−1
dx xnH̃q(x, ξ, t) = h̃q,n0 (t)+

ξ2h̃q,n2 (t) + . . .+ mod(n+ 1, 2)ξnh̃q,nn (t) , (16)

where for n = 0 one has the relations given by Eqs.

(11)-(14).

The correspondence of GPDs to PDFs and EFFs

presages a possibility of studying a spatial distribu-

tion of partons inside the nucleon. Indeed, the sub-

field of hadron structure studies known as nucleon

tomography allows one to extract the density of par-

tons carrying a given fraction of the nucleon longi-

tudinal momentum x as a function of the position

b⊥ in the plane perpendicular to the nucleon mo-

tion. For unpolarized partons inside an unpolarized

nucleon this density is expressed by:

q(x,b⊥) =∫
d2∆

4π2
e−ib⊥ ·∆Hq(x, 0, t = −∆2) , (17)

where we stress the condition ξ = 0, meaning no

change of the longitudinal momentum of the active

parton. This density gets distorted when the nucleon

is polarized. This effect is described by adding extra

terms related to the GPDs H̃ and E. The longitudi-

nal polarization of partons distributed in a longitu-

dinally polarized nucleon according to q(x,b⊥) can

be studied with the Fourier transform of GPD H̃:

∆q(x,b⊥) =∫
d2∆

4π2
e−ib⊥ ·∆H̃q(x, 0, t = −∆2) . (18)

A representation in the impact parameter space is

also possible for the GPD E:

eq(x,b⊥) =∫
d2∆

4π2
e−ib⊥ ·∆Eq(x, 0, t = −∆2) . (19)

A probabilistic interpretation of that result is pos-

sible if one changes the basis from longitudinal to

transverse polarization states of the nucleon [9]. In

such a case, eq(x,b⊥) can be related to a shift of

parton density generated in a transversely polarized

nucleon.

As indicated in Refs. [9, 47], b⊥ is the distance

between the active parton and the point determined

by the positions of individual partons weighted by

their momenta, so that
∑
xib⊥,i = 0, where the

sum runs over all partons (the struck parton and all

spectators as well). This distance is different than

that between the struck parton and the spectator

system, which is given by:

d⊥(x) =
|b⊥|
1− x

, (20)

and the parton distribution given as a function of d⊥
provides a better estimation of the transverse proton

size than q(x,b⊥).

Another useful quantity appearing in the context

of the nucleon tomography is the normalized second

moment of q(x,b⊥) distribution given by:

〈b2⊥〉q(x) =

∫
d2b⊥ b2

⊥q(x,b⊥)∫
d2b⊥ q(x,b⊥)

. (21)

A similar quantity can be also defined for the dis-

tribution of longitudinal polarization to check how

broad this distribution is and how it corresponds to

〈b2⊥〉q(x),

〈b2⊥〉∆q(x) =

∫
d2b⊥ b2

⊥∆q(x,b⊥)∫
d2b⊥ ∆q(x,b⊥)

. (22)

The need of having the proton size finite requires to

keep the mean squared distance between the active

parton and the spectator system,

〈d2⊥〉q(x) =
〈b2⊥〉q(x)

(1− x)
2 , (23)
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finite as well, also in the limit of x→ 1. We will im-

pose it for the valance quarks as an extra constraint

on our Ansatz introduced in Sec. 4.

To avoid a violation of the positivity of parton

densities in the impact parameter space, inequalities

studied in a series of papers [48–55] must hold. In

particular one has the following inequalities, which

are proved to be useful to constrain parameteriza-

tions of GPDs:

|∆q(x,b⊥)| ≤ q(x,b⊥) , (24)

b2
⊥
m2

(
∂

∂b2
⊥
e(x,b⊥)

)2

≤ (q(x,b⊥) +∆q(x,b⊥))×

(q(x,b⊥)−∆q(x,b⊥)) . (25)

For completeness we also show Ji’s sum rule, al-

lowing for the evaluation of total angular momentum

carried by partons:∫ 1

−1
dx x(Hq(x, ξ, 0) + Eq(x, ξ, 0)) = 2Jq . (26)

This feature can be used to investigate the nucleon

spin decomposition. We note however, that this anal-

ysis concentrates on GPDs H and H̃, and therefore

we will not attempt to give any estimation on Jq.

Deeply Virtual Compton Scattering

A prominent role in the GPD phenomenology is

played by Deeply Virtual Compton Scattering:

l(k) +N(p)→ l(k′) +N(p′) + γ(q′) , (27)

where l, N and γ denote lepton, nucleon and pro-

duced photon, respectively; the four-vectors of these

states appear between parenthesis. Under specific

kinematic conditions, the factorization theorem al-

lows one to express the DVCS amplitude as a con-

volution of the hard scattering part, being calcu-

lable within the perturbative QCD approach, and

GPDs, describing an emission of parton from the

nucleon and its subsequent reabsorption, see Fig. 1.

The factorization applies in the Bjorken limit and for

−t/Q2 � 1, where Q2 = −(k − k′)2 is the virtual-

ity of the virtual-photon mediating the exchange of

four-momentum between lepton and proton at Born

order.

The scattering is described by two angles, see Fig.

2. These are φ, being the angle between the lepton

scattering and production planes, and φS , being the

N N

�
�*l

l

x+� x-�

t

Q2

factorization

GPDs

Fig. 1: Partonic interpretation of the DVCS process.

l l

��

�

�S

S

*

Fig. 2: Kinematics of DVCS in the target rest frame.

The angle between the leptonic plane (spanned by

the incoming and outgoing lepton momenta) and the

production plane (spanned by the virtual and out-

going photon momenta) is denoted by φ. The angle

between the leptonic plane and the nucleon polar-

ization vector is denoted by φS .

angle between the lepton scattering plane and the

direction of transversely polarized target.

An electromagnetic process called Bethe-Heitler

has the same initial and final states as DVCS. The

total amplitude for single photon production, T , is

then expressed by a sum of amplitudes for BH and

DVCS processes, which leads to:

|T |2 = |TBH+TDVCS|2 = |TBH|2+|TDVCS|2+I , (28)

where I denotes the interference term. The cross sec-

tion for BH is calculable to a high degree of preci-

sion and therefore can be easily taken into account

in analyses of experimental data. The interference

term provides a complementary information to the

pure DVCS cross section, and in a certain kinematic
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domain allows to access GPDs, even if |TDVCS|2 is

small.

The amplitudes TDVCS and I may be expressed

by combinations of CFFs, which are convolutions of

GPDs with the hard scattering part of the interac-

tion. CFFs are the most basic quantities that one can

unambiguously extract from the experimental data.

The way of how CFFs enter the final amplitudes de-

pends on the beam and target helicity states, which

provides a welcome experimental filter to distinguish

between many possible CFFs and justifies the need

of measuring many observables. For brevity we skip

the formulas showing how TDVCS and I depend on

CFFs. They can be found in Ref. [56]. The evalua-

tion of CFFs is discussed in Sec. 3.

Observables

Let us denote a four-fold differential cross section for

a single photon production by d4σb,ct (xBj, t, Q
2, φ),

where t ∈ {←,→} and b ∈ {←,→} stand for the

target and beam helicities, respectively, and c ∈
{+,−} stands for the beam charge. Here, xBj =

Q2/(2p ·
(
p′ − p)

)
is the usual Bjorken variable. The

cross sections can be used to construct many observ-

ables, like cross sections itself, but also differences of

cross sections and asymmetries. For instance:

d4σ−UU (xBj, t, Q
2, φ) = 1/4

(
(
d4σ→,−← (xBj, t, Q

2, φ) + d4σ→,−→ (xBj, t, Q
2, φ)

)
+(

d4σ←,−← (xBj, t, Q
2, φ) + d4σ←,−→ (xBj, t, Q

2, φ)
))

, (29)

∆d4σ−LU (xBj, t, Q
2, φ) = 1/4

(
(
d4σ→,−← (xBj, t, Q

2, φ) + d4σ→,−→ (xBj, t, Q
2, φ)

)
−(

d4σ←,−← (xBj, t, Q
2, φ) + d4σ←,−→ (xBj, t, Q

2, φ)
))

, (30)

A−LU (xBj, t, Q
2, φ) =

∆d4σ−LU (xBj, t, Q
2, φ)

d4σ−UU (xBj, t, Q2, φ)
. (31)

Here, the capital letters in the subscripts of observ-

ables names denote beam and target polarizations,

respectively, with U standing for “Unpolarized” and

L standing for “Longitudinally polarized”. We also

analyze data for “Transversely polarized targets”,

which are distinguished by the subscript T . These

data are provided for two moments, sin(φ− φS) and

cos(φ− φS), which are distinguished by the corre-

sponding labels in the superscripts, as for instance

in A−,sin(φ−φS)(xBj, t, Q
2, φ). Furthermore there are

observables probing only the beam charge depen-

dency (subscript C), and those combining cross sec-

tions measured with various beam charges to drop

either the DVCS or interference contribution (sub-

scripts I and DVCS, respectively).

A different group consists of Fourier-like observ-

ables related to specific modulations of the φ angle.

For instance:

A−,cos 0C (xBj, t, Q
2) =

1

2π

∫
dφA−C(xBj, t, Q

2, φ) , (32)

A−,sinφLU (xBj, t, Q
2) =

1

π

∫
dφA−LU (xBj, t, Q

2, φ) sinφ . (33)

Another observable used in this analysis is the

slope b(xBj, Q
2) of the t-distribution of the DVCS

cross section integrated over φ. Within the LO for-

malism one can relate this observable to the trans-

verse extension of partons in the proton. However,

this requires the following assumptions, which are

expected to hold at small xBj: i) dominance of the

imaginary part of CFF related to GPD H, ii) neg-

ligible skewness effect at ξ = x, iii) exponential t

dependence of the GPD H at fixed x. Since the

DVCS t-distribution is usually not exactly exponen-

tial, in particular because GPDs for valence and

sea quarks may have different t-dependencies, we

evaluate b(xBj, Q
2) by probing DVCS t-distribution

in several equidistant points ranging from |t| =

0.1 GeV2 to |t| = 0.5 GeV2 and perform a linear

regression on the logarithmized results. The chosen

range of t is typical for the existing measurements

of b(xBj, Q
2) by COMPASS [57] and HERA experi-

ments [58–60].

3 Compton Form Factors

Imaginary part

At LO the imaginary part of a given CFF G ∈
{H, E , H̃, Ẽ}, is proportional to the combination

of corresponding GPDs, Gq ∈ {Hq, Eq, H̃q, Ẽq},
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probed at x = ξ:

ImG(ξ, t) = πG(+)(ξ, ξ, t)

= π
∑
q

e2qG
q(+)(ξ, ξ, t) . (34)

Here, the sum runs over all quark flavors (we remind

that at LO gluons do not contribute to the DVCS

amplitude), eq is the electric charge of the quark

flavor q in units of the positron charge e and Gq(+)

is the singlet (C-even) combination of GPDs:

Gq(+)(x, ξ, t) = Gq(x, ξ, t)−Gq(−x, ξ, t) (35)

for G ∈ {H,E} and:

Gq(+)(x, ξ, t) = Gq(x, ξ, t) +Gq(−x, ξ, t) (36)

for G ∈ {H̃, Ẽ}.

Real part

At LO the real part of a given CFF G can be eval-

uated by probing the corresponding GPD G in two

ways, that is, by integrating over one of two lines

laying in the (x, ξ)-plane. This duality is a conse-

quence of the polynomiality property required by the

Lorentz invariance of GPDs, see Sec. 2.

The first evaluating method is the ”standard”

one, where x values of the involved GPDs are probed

at fixed ξ:

ReG(ξ, t) =

P.V.

∫ 1

0

G(+)(x, ξ, t)

(
1

ξ − x
∓ 1

ξ + x

)
dx . (37)

Here, the quark propagators, 1/(ξ−x) and 1/(ξ+x),

enter in a combination given by the type of probed

GPDs. One has the difference (sum) for the unpo-

larized (polarized) GPDs.

The second evaluating method is known as fixed-

t dispersion relation [38] and it involves the integral

probing GPDs at ξ = x:

ReG(ξ, t) = CG(t)+

P.V.

∫ 1

0

G(+)(x, x, t)

(
1

ξ − x
∓ 1

ξ + x

)
dx . (38)

Again, the combination of quark propagators de-

pends here on the type of probed GPDs, exactly as

for Eq. (37). The additional term in Eq. (38), CG(t),

is the so-called subtraction constant. It has the same

magnitude but the opposite sign for the CFFs H and

E , and it vanishes for the CFFs H̃ and Ẽ :

CH(t) = −CE(t) , (39)

CH̃(t) = CẼ(t) = 0 . (40)

After a quick examination of Eqs. (34) and (38),

one may notice that the dispersion relation provides

a welcome relationship between the real and imagi-

nary parts of the same CFF. As a consequence how-

ever, at the LO approximation only GPDs in the

limited case of x = ξ and the subtraction constant

can be probed.

Subtraction constant

The subtraction constant introduced in Eq. (38) can

be related to D-term form factor, Dq(t), in the fol-

lowing way:

CqG(t) = 2

∫ 1

−1

Dq(z, t)

1− z
dz ≡ 4Dq(t) . (41)

Here, z = x/ξ and Dq(z, t) is the D-term [61]. It

was originally introduced to restore the polynomial-

ity property in the first models based on double dis-

tributions [62], but later it has been recognized as an

important element of the GPD phenomenology. Be-

cause the D-term vanishes outside the ERBL region

|x| < |ξ|, it is not observed in the limit of ξ = 0, and

it can be only studied in the ”skewed” case of ξ 6= 0.

By expanding the D-term in terms of Gegen-

bauer polynomials,

Dq(z, t) = (1− z2)

∞∑
i=1
odd

dqi (t)C
3/2
i (z) , (42)

one can obtain the following series:

Dq(t) =

∞∑
i=1
odd

dqi (t) . (43)

The first term of this expansion, dq1(t), is of a special

importance, as it enters the quark part of the QCD

energy momentum tensor and it provides an impor-

tant information on how strong forces are distributed

in the nucleon [63].
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The subtraction constant can be evaluated by

comparing Eqs. (37) and (38):

CqG(t) =

P.V.

∫ 1

0

Gq(+)(x, ξ, t)

(
1

ξ − x
− 1

ξ + x

)
dx −

P.V.

∫ 1

0

Gq(+)(x, x, t)

(
1

ξ − x
− 1

ξ + x

)
dx , (44)

which can be evaluated without principal value pre-

scription, because the singularity at x = ξ is inte-

grable in the expression:

CqG(t) =

∫ 1

0

(
Gq(+)(x, ξ, t)−Gq(+)(x, x, t)

)
×(

1

ξ − x
− 1

ξ + x

)
dx . (45)

Unfortunately, naively setting ξ = 0 in the above

formula results in a divergent integral. However, the

following moments:

CqG,j(t) =

2

∫ 1

0

(
Gq(+)(x, x, t)−Gq(+)(x, 0, t)

)
xjdx , (46)

are well defined for odd positive j and can be an-

alytically continued to j = −1, if Gq(+)(x, x, t) −
Gq(+)(x, 0, t) has a proper analytic behavior, as de-

scribed in [64]. Such an analytical continuation can

be written as:

CqG,j(t) =

2

∫ 1

(0)

(
Gq(+)(x, x, t)−Gq(+)(x, 0, t)

)
xjdx , (47)

where we have introduced the analytic regularization

technique [40,64–66], given by the following prescrip-

tion:∫ 1

(0)

f(x)

xa+1
=∫ 1

0

f(x)− f(0)− xf ′(0)− . . .
xa+1

+

f(0)

∫ 1

(0)

dx

xa+1
+ f ′(0)

∫ 1

(0)

dx

xa
+ · · · =∫ 1

0

f(x)− f(0)− xf ′(0)− . . .
xa+1

−

f(0)

a
− f ′(0)

a− 1
+ . . . (48)

Here, one subtracts as many terms from the Taylor

expansion of f around zero as needed to make the

integral convergent, and one treats the compensating

terms to be convergent as well.

The analytic properties of the Mellin moments of

GPDs has been never proved to be a consequence of

general principles (neither it has never been proved

to contradict general principles) and because of that

can be only treated as a model assumption to be

a posteriori confronted with experimental data 1.

We will make such an assumption, and calculate the

subtraction constant as:

CqG(t) = CqG,−1(t)

= 2

∫ 1

(0)

Gq(+)(x, x, t)−Gq(+)(x, 0, t)

x
dx . (49)

The self-consistency of this approach will lead us to

relations (62) and (63) among the otherwise non-

related parameters of the fitting model.

4 Ansatz

We present in this study a global extraction of CFFs.

According to the terminology used within the GPD

community, “global” refers to constraining parame-

ters of an assumed CFF functional forms from vari-

ous measurements on a wide kinematic range. On the

contrary in local extractions, CFFs are extracted as

a set of disconnected values in bins of ξ and t (see for

instance Ref. [34,35]). We restrict our analysis to the

LO approximation and we neglect any contribution

coming from higher-twist effects and kinematic (tar-

get mass and finite-t) corrections. We adopt the de-

scription of cross sections in terms of DVCS and BH

amplitudes by Guichon and Vanderhaeghen, used for

phenomenology for instance in Refs. [71,72] and pub-

licly available in the open-source PARTONS frame-

work [42]. We point out, that the limited phase space

covered by available data, the precision of those data

and the plenitude of involved dependencies force us

to keep the parameterizations as simple as possible.

Otherwise significant correlations appear between

1Analytical properties of the GPDs are the subject of
an ongoing discussion, see for instance [40, 41, 67–70]. In
particular Sec. 4 of [41] illustrates the relation between
analytic regularization and the analyticital properties of
GPD.
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fitted parameters, which somehow obscures the in-

terpretation of obtained results.

The Ansatz introduced in this section is explicitly

given for a factorization scale that one may recognize

as the reference scale Q2
0 at which the model is de-

fined. To include the factorization scale dependence

in our fit, that is for the comparison with experi-

mental data of Q2 6= Q2
0, we consider the so-called

forward evolution, i.e. the one followed by PDFs.

The usage of the genuine GPD evolution equations

requires the knowledge of GPDs in the full range of

x independently on ξ, while in this analysis only the

GPDs at x = ξ are considered. It was checked how-

ever with the GK GPD model [73–75], that the dif-

ference between the two evolution schemes is small

for x = ξ, unless Q2 � Q2
0.

Decomposition into valence and sea contributions

In this work we use the decomposition scheme into

valence and sea contributions inspired by the double

distribution modeling of GPDs [62, 76, 77]. It gives

us:

Gq(ξ, ξ, t) = Gqval(ξ, ξ, t) +Gqsea(ξ, ξ, t) , (50)

for x = ξ and G ∈ {H,E, H̃, Ẽ},

Gq(−ξ, ξ, t) = −Gqsea(ξ, ξ, t) , (51)

for x = −ξ and G ∈ {H,E}, and

Gq(−ξ, ξ, t) = Gqsea(ξ, ξ, t) , (52)

for x = −ξ and G ∈ {H̃, Ẽ}. Here, Gqval and Gqsea

are GPDs for valence and sea quarks, respectively.

With this decomposition one can replace Eqs. (35)

and (36) by one equivalent expression:

Gq(+)(ξ, ξ, t) = Gqval(ξ, ξ, t) + 2Gqsea(ξ, ξ, t) . (53)

CFFs H and H̃

Data used in this analysis are primarily sensitive to

the CFFs H and H̃. The LO and LT formalism al-

lows us to evaluate those CFFs with Eq. (34) for the

imaginary part and with Eq. (38) for the real part.

The subtraction constant, which appears in the dis-

persion relation, is evaluated with Eq. (49), making

use of the analytic regularization prescription given

by Eq. (48). All together, only the GPDs Hq and H̃q

at ξ = 0 and ξ = x are needed.

For the GPDs Hq and H̃q at ξ = 0 we use an

Ansatz that is commonly used in phenomenological

analyses of GPDs:

Gq(x, 0, t) = pdfqG(x) exp(fqG(x)t) . (54)

Here, pdfqG(x) is either a parameterization of the un-

polarized PDF, q(x), for the GPD Hq or a parame-

terization of the polarized PDF, ∆q(x), for the GPD

H̃q. The profile function, fqG(x), fixes the interplay

between the x and t variables, and it is given by:

fqG(x) = AqG log(1/x)+BqG(1−x)2+CqG(1−x)x , (55)

where AqG, BqG and CqG are free parameters to be con-

strained by experimental data. This form of fqG(x)

allows to modify the classical AqG log(1/x) term by

BqG(1−x)2 in the small x region and by CqG(1−x)x in

the high x region. The terms proportional to BqG and

CqG were found to work best in the analysis of EFF

data (see Sec. 6), where all combinations of (1− x)i

and (1 − x)jxk polynomials with i, j, k = 1, . . . , 5

were examined. We note that AqG log(1/x) can not

be directly multiplied by a polynomial of x, which is

imposed by a need of keeping Gq(x, 0, t)/x−(δ+A
q
Gt)

analytic at x = 0. To keep the distance between the

active quark and the spectator system finite, see Eq.

(23), we require to have CqvalH = −AqvalH .

The profile function given by Eq. (55) is more

flexible than that used in the GK model [73–75],

fqG,GK(x) = AqG + BqG log(1/x), and in the VGG

model [76, 78–80], fqG,VGG(x) = AqG log(1/x)(1− x).

In particular, it should be flexible enough to take

into account a different interplay between the x and

t variables in the valence and sea regions if required

by experimental data. We note that fqG,DK(x) =

AqG log(1/x)(1 − x)3 + BqG(1 − x)3 + CqG(1 − x)2x

used in Refs. [47,81] to fit EFF data can not be used

in this analysis because of the aforementioned issue

with the analyticity caused by AqG log(1/x)(1 − x)3

term.

For GPDs Hq and H̃q at ξ = x we utilize the

concept of skewness function:

gqG(x, ξ, t) =
Gq(x, ξ, t)

Gq(x, 0, t)
. (56)

In our case:

Gq(x, x, t) = Gq(x, 0, t) gqG(x, x, t) , (57)
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where Gq(x, 0, t) is given by Eq. (54). We assume the

following form of the skewness function:

gqG(x, x, t) ≡ gqG(x, t) =

aqG
(1− x2)2

(1 + t(1− x)(bqG + cqG log(1 + x))) , (58)

where aqG is a free parameter to be constrained by ex-

perimental data. Two other parameters, bqG and cqG,

which govern the t-dependence of the skewness func-

tion, are fixed in a way to avoid singularities in the

evaluation of the subtraction constant. Namely, to

use the analytic regularization prescription at fixed

t one has:

a = δ +AqGt , (59)

f(x) =
Gq(x, x, t)−Gq(x, 0, t)

x−a
=

Gq(x, 0, t) (gqG(x, t)− 1)

x−a
, (60)

where a and f(x) were introduced in Eq. (48) and δ

describes the behavior of PDFs at x→ 0:

q(x) ∼ x−δ . (61)

The singularities appear in the two first compen-

sating terms at a = 0 and 1 − a = 0, that is for

t ≡ t∞0 = −δ/AqG and t ≡ t∞1 = (1 − δ)/AqG, re-

spectively. The problem does not emerge for higher

compensating terms as one typically has 0 < δ < 1

for valence quarks and 1 < δ < 2 for sea quarks. The

singularities are regularized by requiring f(0) = 0 at

t∞0 and f ′(0) = 0 at t∞1 , which is achieved by setting

bqG and cqG to:

bqG =
AqG(aqG − 1)

aqGδ
, (62)

cqG =
(aqG − 1)

p0 (δ − 1) aqGδ

(
p0 (2BqG − C

q
G) (δ − 1) +

AqGp0 (δ − 1− α) +AqGp1
)
, (63)

where p0, p1 and α are parameters of PDF parame-

terizations introduced in Sec. 5.

We stress that our Ansatz for the skewness func-

tion is explicitly defined at x = ξ and it can not

be generalized to the case of x 6= ξ without a non-

trivial modification. The form of the skewness func-

tion has been selected because of the following rea-

sons: i) for sufficiently small x and t, the skewness

function coincides with a constant value given by aqG.

Such a behavior was predicted for HERA kinemat-

ics [82] and it was used in one of the first extrac-

tions of GPD information [83] from H1 data [84].

These data suggest aqH ≈ 1. ii) In the limit of x→ 1

the skewness function is driven by 1/(1− x2)2. This

form has been deduced from Ref. [39], where the

power behavior of GPDs in the limit of x → 1 was

studied within the pQCD approach. iii) The sub-

dominant t-dependence in Eq. (58) has been inspired

by the skewness function evaluated from GK [73–75]

and VGG [76,78–80] GPD models, both being based

on the one component double distribution modeling

scheme [62]. In those models the t-dependence of the

skewness function is dominated by bqG+cqG log(1 + x)

term. In our Ansatz we multiply it by (1 − x) to

avoid any t-dependence at x→ 1, which is imposed

by Ref. [39], where it was shown that GPDs should

not depend on t in this limit, regardless the value of

ξ.

CFFs E and Ẽ

For E and Ẽ we use a simplified treatment justified

by the poor sensitivity of the existing measurements

on the corresponding CFFs. Moreover, the forward

limit of those GPDs has not been measured, result-

ing in a need of fixing more parameters than for the

GPDs H and H̃, if an analog modeling was to be

adopted.

The modeling of the CFF E is similar to that of

H and H̃, i.e. it is based on the dispersion relation

with the subtraction constant of the opposite sign as

for H. We only consider the valence sector with the

forward limit of GPD Eqval taken from Ref. [81]:

Eqval(x, 0, 0) ≡ eqval(x) =

κqNqvalx
−αqval (1− x)βqval (1 + γqval

√
x) , (64)

where κu = 1.67 and κd = −2.03 are the magnetic

anomalous moments for up and down quarks, respec-

tively, and where βuval
= 4.65, βdval = 5.25, γuval

= 4

and γdval = 0. The parameter αuval
= αdval ≡ α is

fitted to EFF data as described in Sec. 6. The nor-

malization parameter:

N−1qval =Γ (1 + βqval)

(
Γ (1− αqval)

Γ (2− αqval + βqval)
+

γqval
Γ (1.5− αqval)

Γ (2.5− αqval + βqval)

)
, (65)
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ensures that:∫ 1

0

dx eqval(x) = κq . (66)

At ξ = 0 the t-dependence is introduced analogously

as for the GPDs H and H̃, i.e.:

Eqval(x, 0, t) = eqval(x) exp(fqvalE (x)t) , (67)

with fqvalE (x) given by Eq. (55), where: AqvalE , BqvalE ,

CqvalE are free parameters being fitted to EFF data as

described in Sec. 6. It is assumed that AqvalE = AqvalH .

The skewness function used to evaluate

Eqval(x, x, t) from Eqval(x, 0, t) is of the follow-

ing form:

gqvalE (x, x, t) ≡ gqvalE (x, t) =
aqvalE

(1− x2)3
f(x)

f(0)
, (68)

which again is deduced from Ref. [39]. Here, auval

E =

advalE ≡ aqvalE = 1 and any t-dependence is neglected.

An additional ξ-dependence coming from twist-three

and twist-four distribution amplitudes of the nucleon

is denoted by f(x). In the present analysis, where

only the leading twist is considered, it is assumed

that f(x)/f(0) = 1.

For the GPD Ẽ the shape of the corresponding

form factor is fixed by the GK model [73–75]. Only

the normalization parameter, NẼ , is fitted to the

experimental data,

Ẽ(ξ, t) = NẼ ẼGK(ξ, t) . (69)

Inequalities

We impose two extra constraints implied by the pos-

itivity of parton densities in the impact parameter

space. Namely, for the profile functions we require to

have:

fqH(x) > 0 , (70)

fqH(x) ≥ fq
H̃

(x) , (71)

being imposed by Eq. (24). The requirements are im-

plemented in a way to penalize combinations of fit-

ted parameters that do not hold the inequalities. It

is achieved by introducing a penalty to the χ2 func-

tion, which value is proportional to the maximum

violation of a given inequality. Such an implementa-

tion allows us to keep the χ2 function smooth. We

report that the inequalities given by Eqs. (70) and

(71) have proved to be important to constrain pa-

rameterizations for the sea contribution to GPD H

and for the valence contribution to GPD H̃. It is

due to a low sensitivity to those contributions and a

limited phase space covered by the available data.

The inequality (25) is not checked during the

minimization. Namely, by following Ref. [47] one can

obtain:

eq(x)2

16m2fqE(x)4
≤ 1

b2
⊥

[
q(x)2

fqH(x)2
exp

(
b2
⊥

2fqE(x)
− b2

⊥
2fqH(x)

)
−

∆q(x)2

fq
H̃

(x)2
exp

(
b2
⊥

2fqE(x)
− b2

⊥
2fq
H̃

(x)

)]
. (72)

where for fq
H̃

(x) = fqH(x) (condition not imposed in

this analysis) one can minimize right hand side over

b2
⊥, and get the strongest inequality:

eq(x)2

8m2
≤ exp(1)

(
fqE(x)

fqH(x)

)3 (
fqH(x)− fqE(x)

)
×[

q(x)2 −∆q(x)2
]
, (73)

which is used for instance in Ref. [81]. To effec-

tively use the inequality (72) in the minimization,

one should simultaneously fit all free parameters of

fqH(x), fq
H̃

(x), fqE(x) and e(x), which presently is not

the case, as we fit EFF and DVCS data separately. In

addition, for the GPDs H̃ and E we consider only the

valence contribution, while the sea sector may have

a significant impact on (72) in the range of small xBj.

The validity of (72) has however been checked a pos-

teriori, that is after the χ2-minimization. The result

of this test shows that the inequality is violated for

most of the replicas for very small b2
⊥. To correct

this one should change the simplified Ansatz used

for GPD E and preferably fit its free parameters si-

multaneously with those for other GPDs, which is

beyond the scope of this analysis.

Approximations and summary

For the GPD H and valence quarks, all parameters

of the profile function given by Eq. (55) are fitted

to EFF data, where we fixed Cuval

H = −Auval

H and

CdvalH = −AdvalH . The unconstrained parameter in

the skewness function given by Eq. (58) is fitted to

DVCS data, where it is assumed that auval

H = advalH ≡
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aqvalH . For sea quarks all parameters for both pro-

file and skewness functions are fitted to DVCS data.

Due to a limited sensitivity to the sea sector, we as-

sume the symmetry with respect to the change of

quark flavor, i.e. one has ausea

H = adseaH = asH ≡ a
qsea
H ,

Ausea

H = AdseaH = AsH ≡ AqseaH , etc. Sea components

are not yet fully symmetric in our fit, as we do not

impose the flavor symmetry in PDFs, see Sec. 5. Due

to the lack of precision of axial EFF data, for the

GPD H̃ all parameters for both profile and skewness

functions are fitted to DVCS data. As the contribu-

tion coming from ∆qsea is subdominant, we neglect

it entirely. For valence quarks, similarly to the GPD

H, we allow the profile function to be different for

uval and dval, while for the skewness function one has

auval

H̃
= adval

H̃
≡ aqval

H̃
. For E and Ẽ only the valence

quarks are considered. For the GPD E all free pa-

rameters for both profile function and forward limit

given by Eq. (64) are fitted to EFF data. For the

GPD Ẽ the normalization parameter NẼ is fitted to

DVCS data. In total, we fit 9 parameters to EFF

data (see Tab. 2) and 13 parameters are constrained

by DVCS data (see Tab. 5).

5 Analysis of PDFs

The analytic regularization prescription introduced

in Eq. (48) requires the function q(x)/x−δ to be non-

zero and analytic at x = 0. However, the numeric

evaluation of such a function and its derivatives near

x = 0 is difficult for typical PDF sets, like those pub-

lished by NNPDF [85] and CTEQ [86] groups, be-

cause of several numerical issues. Namely, interpola-

tions in PDF grids and extrapolations outside those

grids for small x, and a delicate cancellation of the

numerator and denominator of q(x)/x−δ make the

evaluation numerically unstable. The problem can be

avoided with functional parameterizations of PDFs,

which can be used for a straightforward evaluation

of q(x)/x−δ and its derivatives. In addition, such pa-

rameterizations allow for a significant reduction of

computation time and a precise determination of δ.

In this analysis the parameterization used for

both unpolarized and polarized PDFs reads:

pdfG(x,Q2) = x−g(δp,δq,Q
2)×

(1− x)α
4∑
i=0

g(pi, qi, Q
2)xi , (74)

where:

g(p, q,Q2) = p+ q log
Q2

Q2
0

, (75)

describes the evolution in the renormalization scale,

recognized as Q2, where Q2
0 = 2 GeV2 can be iden-

tified as the initial scale. The parameterization con-

tains thirteen parameters,

δp, δq, α, pi, qi, where i = 0, 1, . . . , 4 , (76)

constrained for each quark flavor in a fit to

”NNPDF30 lo as 0118 nf 3” set [85] for unpolarized

PDFs and to ”NNPDFpol11 100” set [87] for polar-

ized PDFs. These fits are performed for a grid of

nearly 10000 points equidistantly distributed in the

ranges of 10−4 < x < 0.9 and 1 GeV2 < Q2 <

20 GeV2. We have selected the sets by NNPDF

group as: i) they are provided for both q(x) and

∆q(x), ii) for q(x) they are provided at LO and three

active flavors, iii) they provide reliable estimation of

uncertainties extracted through the neural network

approach and the replica method. The PDF sets are

handled with LHAPDF interface [88].

A consistent fit to all replicas of used NNPDF

sets allows us to reproduce the original uncertainties

of PDFs. Figure 3 demonstrates the agreement be-

tween the original sets and our fits. The comparison

is satisfactory and in particular the central values

of fitted PDFs stay within the original uncertainty

bands.

6 Analysis of Dirac and Pauli Form Factors

Equations (11)-(14) link GPDs to EFFs, thus they

can be used to constrain GPDs from elastic data.

In this analysis we use this feature to constrain the

interplay between the x and t variables for the GPDs

H and E, however only for the valence quarks. More

precisely, we fix the parameters of fqvalH/E(x) defined in

Eq. (55) by using the Ansatz for Hqval(x, 0, t) given

in Eq. (54) and that for Eqval(x, 0, t) given in Eq.

(67). We achieve this by studying proton, F pi (t), and

neutron, Fni (t), Dirac and Pauli form factors:

F pi = euF
u
i + edF

d
i ,

Fni = euF
d
i + edF

u
i , where i = 1, 2 , (77)
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Fig. 3: Comparison between PDF sets by NNPDF group [85, 87] and parameterizations based on Eq. (74).

The upper (lower) row is for unpolarized (polarized) PDFs. For a given row, the left plot is for uval quarks,

while the right one is for dsea quarks. For a given figure, the black solid curve with the grey band representing

68% confidence level is for PDFs by NNPDF group, while the blue dashed curve with the hatched band is

for our fit. The curves are evaluated at Q2 = 2 GeV2.

related to Sachs form factors as follows:

GiM = F i1 + F i2 ,

GiE = F i1 +
t

4m2
F i2, where i = p, n . (78)

Sachs form factors can be used to define many ob-

servables, in particular:

• the magnetic form factor normalized to both

magnetic moment, µp or µn, and dipole form fac-

tor:

GiM,N (t) =
GiM (t)

µiGD(t)
, (79)

where i = p, n and

GD(t) =
1

(1− t/M2
D)

2 , (80)

with M2
D = 0.71 GeV2.

• the ratio of electric and normalized magnetic

form factors

Ri(t) =
µiG

i
E(t)

GiM (t)
. (81)

where i = p, n.

• the squared charge radius of neutron:

r2nE = 6
dGnE(t)

dt

∣∣∣∣
t=0

. (82)

Experimental data for those observables and for

GnE(t) come from the sources summarized in Table

1. For the selection of observables and related data

we follow Ref. [81], which deals with the subject

in great detail. In total, the used sample of data
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consists of 178 data points covering the range of

0.017 GeV2 ≤ |t| ≤ 31.2 GeV2. Our fit to those

data ends for the central PDF replica with χ2/ndf =

129.6/(178 − 9) ≈ 0.77. The fit is repeated for all

other PDF replicas and for 100 instances of repli-

cated data to propagate the uncertainties of EFF

data to the analysis of CFFs. A single instance of

replicated data is generated with the following pre-

scription:

vi ±∆tot
i

replica j−−−−−→ rndj(vi, ∆
tot
i )±∆tot

i , (83)

where vi is the measured value associated to the ex-

perimental point i. The total uncertainty, which is

also used to evaluate the χ2 value in the fit to EFF

data, reads:

∆tot
i =

√
(∆stat

i )
2

+ (∆sys
i )

2
, (84)

where ∆stat
i and ∆sys

i are statistical and systematic

uncertainties, respectively, both linked to the point i.

The generator of random numbers following a spec-

ified normal distribution, f(x|µ, σ), is denoted by

rndj(µ, σ), where j is both the identifier of a given

replica and a unique random seed.

Table 1: EFF data used in this analysis. For Rn we

use data coming from Ref. [81], which are evaluated

from those specified in this table.

Observable Reference No. of points

GpM,N [89] 54

Rp [89–99] 54
GnM,N [100–104] 36

Rn [105–114] 21
GnE [115] 12
r2nE [116] 1

The final result consists of 201 replicas, where

each replica represents a possible realization of fitted

EFFs. Such a set of replicas can be used to estimate

mean values and uncertainties of the fitted parame-

ters, which we summarize in Table 2. Experimental

data are superimposed with the results of our fit in

Fig. 4, while distributions of quark EFFs are shown

in Fig. 5.

Table 2: Values of parameters fitted to EFF data

together with estimated uncertainties coming from

those data and used PDF parameterizations.

Parameter Mean Data unc. Unpol. PDF unc.

Auval

H/E 0.99 0.01 0.08

Buval

H −0.50 0.02 0.14

Adval

H/E 0.70 0.02 0.08

Bdval

H 0.47 0.07 0.24
α 0.69 0.01 0.03

Buval

E −0.69 0.04 0.18
Cuval

E −0.92 0.04 0.09

Bdval

E −0.54 0.06 0.20

Cdval

E −0.73 0.06 0.22

7 DVCS data sets

Table 3 summarizes DVCS data used in this analy-

sis. Currently, only proton data are used, while those

sparse ones for neutron targets are foreseen to be in-

cluded in the future. We note, that recent Hall A

data [117, 118] published for unpolarized cross sec-

tions, d4σ−UU , are not used in the present analysis

since it was not possible to correctly describe them

with our fitting Ansatz, and their inclusion was caus-

ing a bias on the final extraction of GPD informa-

tion. This specific question will be addressed in a fu-

ture study. However we keep the recent Hall A data

for differences of cross sections,∆d4σ−LU . In addition,

we skip all DVCS data published by HERA exper-

iments since they should be dominated by gluons,

and would probably lead to misleading conclusions

in our analysis which is adapted to the quark sector.

We will back to these problems in Sec. 9.

We apply two kinematic cuts on experimental

data:

Q2 > 1.5 GeV2 , (85)

− t/Q2 < 0.25 . (86)

The purpose of those cuts is to restrict the phase-

space covered by experimental data to the deeply

virtual region where one can rely on the factoriza-

tion between GPDs and the hard scattering kernel.

The values of those cuts have been selected with the

correspondence to KM analysis [36], which may help

to compare results of both analyses in the future.
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Fig. 4: Elastic Form Factor data listed in Table 1 and fitted according to the text. The gray bands indicate
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PDFs are indicated by the labels. For data points provided with systematic uncertainties, the inner bars
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uncertainties. Otherwise, statistical uncertainties are shown.
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Fig. 5: Parton Dirac and Pauli form factors obtained in this analysis. For further description see Fig. 4.

8 Uncertainties

In this analysis all the uncertainties are evaluated

with the replica method, which for a sufficiently

large set of replicas allows one to accurately repro-

duce the probability distribution of a given prob-

lem. We distinguish four types of uncertainties on

the extracted parameterizations of CFFs. They ori-

gin from: i) DVCS data, ii) unpolarized PDFs, iii)

polarized PDFs) and iv) EFFs. Each type of uncer-

tainty is estimated independently, as described in the

following.

The uncertainties coming from DVCS data are

estimated with a set of 100 instances of replicated

data. Similarly to the analysis of EFFs, see Sec. 6, a

single instance of replicated data is generated with

the following prescription:

vi ±∆tot
i

replica j−−−−−→(
rndj(vi, ∆

tot
i )±∆tot

i

)
× rndj(1, ∆

norm
i ) . (87)

Here, vi is the measured value associated to the

experimental point i, which comes with statistical,

∆stat
i , systematic, ∆sys

i , and normalization, ∆norm
i ,

uncertainties. The latter one appears whenever the

observable is sensitive to either beam or target polar-

ization, or to both of them. In such cases the polar-

ization describes the analyzing power for the extrac-

tion of those observable and the normalization un-

certainties are related to the measurement or other

determination of the involved polarizations. The to-

tal uncertainty, which is also used in the fit of CFFs

to evaluate the χ2 value, is evaluated according to

Eq. (84).

The uncertainties coming from unpolarized and

polarized PDFs are estimated by propagating our
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Table 3: DVCS data used in this analysis.

No. Collab. Year Ref. Observable
Kinematic
dependence

No. of points
used / all

1 HERMES 2001 [13] A+
LU φ 10 / 10

2 2006 [119] Acos iφ
C i = 1 t 4 / 4

3 2008 [120] Acos iφ
C i = 0, 1 xBj 18 / 24

A
sin(φ−φS) cos iφ
UT,DVCS i = 0

A
sin(φ−φS) cos iφ
UT,I i = 0, 1

A
cos(φ−φS) sin iφ
UT,I i = 1

4 2009 [121] Asin iφ
LU,I i = 1, 2 xBj 35 / 42

Asin iφ
LU,DVCS i = 1

Acos iφ
C i = 0, 1, 2, 3

5 2010 [122] A+,sin iφ
UL i = 1, 2, 3 xBj 18 / 24

A+,cos iφ
LL i = 0, 1, 2

6 2011 [123] A
cos(φ−φS) cos iφ
LT,DVCS i = 0, 1 xBj 24 / 32

A
sin(φ−φS) sin iφ
LT,DVCS i = 1

A
cos(φ−φS) cos iφ
LT,I i = 0, 1, 2

A
sin(φ−φS) sin iφ
LT,I i = 1, 2

7 2012 [124] Asin iφ
LU,I i = 1, 2 xBj 35 / 42

Asin iφ
LU,DVCS i = 1

Acos iφ
C i = 0, 1, 2, 3

8 CLAS 2001 [14] A−,sin iφLU i = 1, 2 — 0 / 2

9 2006 [125] A−,sin iφUL i = 1, 2 — 2 / 2

10 2008 [126] A−LU φ 283 / 737

11 2009 [127] A−LU φ 22 / 33

12 2015 [128] A−LU , A−UL, A−LL φ 311 / 497

13 2015 [129] d4σ−UU φ 1333 / 1933

14 Hall A 2015 [117] ∆d4σ−LU φ 228 / 228

15 2017 [118] ∆d4σ−LU φ 276 / 358
16 COMPASS 2018 [57] b — 1 / 1

SUM: 2600 / 3970

parameterizations of replicas by NNPDF group, see

Sec. 5. Namely, we repeat our fit to DVCS data sep-

arately for each PDF replica, that is 100 times for

unpolarized PDFs and 100 times for polarized PDFs.

A similar method is used to evaluate the uncertain-

ties coming from EFF parameterizations. We repeat

our fit to DVCS data for each replica obtained in the

analysis of EFF data, see Sec. 6.

As a result of this analysis we obtain a set of 401

replicas, where each of them represents a possible

realization of CFF parameterizations. For a given

kinematic point the mean and uncertainties can be

then estimated by taking the mean and the standard

deviation of values evaluated from those replicas.

9 Results

Performance

For the central PDF and EFF replicas the minimum

value of the χ2 function returned by the minimiza-

tion routine (Minuit [130] ported to ROOT [131])

is 2346.3 for 2600 experimental points and 13 free

parameters, which gives the reduced value equal to

2346.3/(2600−13) ≈ 0.91. The values of χ2 function

per experimental data set are summarized in Table

4. In general the agreement between our fit and ex-

perimental data is quite good. The only exception is

for the COMPASS point, on which we will comment

in the following.

In this analysis a set of 401 replicas is obtained

that can be used to estimate mean values and uncer-
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tainties of the fitted parameters. We summarize this

in Table 5, where we also indicate ranges in which

the minimization routine was allowed to vary the fit-

ted parameters. As one can see from this table, the

parameter BqseaH is found to be at the lower limit of

the allowed range. Without this limit the fit would

end with a much smaller value of BqseaH compensated

by a higher value of AqseaH , which we consider to be

unphysical. The problem with BqseaH is a consequence

of the sparse data covering low-xBj region, but it may

be also a sign of the breaking of the LO description

in the range dominated by sea quarks and gluons.

In addition to the fitted parameters, in Table 5

we also show typical values of bqG and cqG evaluated

from Eqs. (62) and (63), respectively. These values

indicate that the t-dependence in the skewness func-

tion is subdominant, which we consider to be an ex-

pected feature.

Figures 6-9 provide a straightforward comparison

between the results of our analysis and some selected

data sets coming from various experiments. These

plots can be used in particular to estimate the effect

of PDF and EFF uncertainties, which one can not

judge from Table 4.

In Fig. 7 the comparison for both d4σ−UU and

∆d4σ−LU data coming from Hall A is shown, how-

ever one should keep in mind that only those for

∆d4σ−LU are used in this analysis. In general the

agreement between the unpolarized cross section

data published by Hall A [117, 118] and our fit is

poor, which can be qualitatively expressed be the

reduced value of χ2 function evaluated for those

data equal to 5144.4/594 ≈ 8.66. The agreement

is better for φ ' 0, where for 0 < φ < 45◦ and

315◦ < φ < 360◦ one has 232.4/132 ≈ 1.76. We note

that the KM model also has a problem to describe

Hall A unpolarized cross section data at LT and LO

accuracy [36], and it was suggested [118] that in-

cluding HT and NLO corrections may be needed to

improve the quality of the fit.

Figure 9 demonstrates the comparison between

results of our fit and experimental data for the t-

slope b coming from the measurements by COM-

PASS [57], ZEUS [59] and H1 [58, 60] experiments.

We remind that for this observable only the COM-

PASS point is used in this analysis. As one can judge

from the figure, the agreement between our fit and

experimental data is lost for small xBj, i.e. for the

range where sea quarks and gluons dominate. We

only leave the COMPASS point to have a cover-

age in the intermediate range of xBj, where valence

quarks may still contribute significantly. While it is

tempting to improve the agreement for small xBj by

adding extra terms to fqseaH (x), like those propor-

tional to (1−x)n with large n, we refrain from doing

that, treating the disagreement as a possible mani-

festation of NLO effects. The included comparison

with GK [73–75] and VGG [76, 78–80] GPD mod-

els shows that GK manages to reproduce the trend

dictated by the HERA data reasonably well. This is

not a full surprise, as this model was constrained in

the low-xBj region, however by Deeply Virtual Me-

son Production (DVMP) data. It is worth pointing

out, that the lowest possible order of contribution to

DVMP starts with α1
S , while for DVCS one has α0

S .

It is beyond the scope of this paper, but in the fu-

ture multichannel analyses of exclusive processes the

issue of using the same order of pQCD calculations

may become important.

Table 4: Values of the χ2 function per data set. For

a given data set, cf. Table 3, given are: χ2 value,

the number of experimental points n, and the ratio

between these two numbers.

No. Collab. Year Ref. χ2 n χ2/n

1 HERMES 2001 [13] 9.8 10 0.98
2 2006 [119] 2.9 4 0.72
3 2008 [120] 24.2 18 1.35
4 2009 [121] 40.1 35 1.15
5 2010 [122] 40.3 18 2.24
6 2011 [123] 14.5 24 0.60
7 2012 [124] 25.4 35 0.73
8 CLAS 2001 [14] — 0 —
9 2006 [125] 0.9 2 0.47
10 2008 [126] 371.1 283 1.31
11 2009 [127] 36.4 22 1.66
12 2015 [128] 351.4 311 1.13
13 2015 [129] 937.9 1333 0.70
14 Hall A 2015 [117] 220.2 228 0.97
15 2017 [118] 258.8 276 0.94
16 COMPASS 2018 [57] 10.7 1 10.67

Subtraction constant

The subtraction constant obtained in this analysis

is shown as a function of t at Q2 = 2 GeV2 and as

a function of Q2 at t = 0 in Fig. 10. One may ob-

serve a large uncertainty coming from PDF param-
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Table 5: Values of the parameters fitted to DVCS data together with estimated uncertainties coming from

those data, (un-)polarized PDFs and EFFs. Two last columns indicate the limits in which the minimization

routine was allowed to vary the corresponding parameters. In addition, exemplary values of bqG and cqG
parameters evaluated at Q2 = 2 GeV2 from Eqs. (62) and (63) are given.

Parameter Mean Data unc. Unpol. PDF unc. Pol. PDF unc. EFF unc.
Limit

min max

aqvalH 0.81 0.04 0.17 0.02 < 0.01 0.2 2.0
aqseaH 0.99 0.01 0.02 < 0.01 < 0.01 0.2 2.0
aq
H̃

1.03 0.04 0.30 0.24 0.01 0.2 2.0

NẼ −0.46 0.10 0.09 0.06 0.01 −10 10

AqseaH 2.56 0.23 0.30 0.09 0.03 0.1 10
BqseaH −5 at the limit −5 20
CqseaH 34 27 49 14 3 −5 200

Auval

H̃
0.77 0.12 0.30 0.23 0.07 0.1 10

Buval

H̃
−0.02 0.26 0.75 0.24 0.15 −5 20

Cuval

H̃
−0.92 0.07 0.44 0.24 0.04 −5 200

Adval

H̃
0.64 0.24 0.30 0.28 0.05 0.1 10

Bdval

H̃
−1.19 0.45 0.91 0.98 0.22 −5 20

Cdval

H̃
−0.55 0.24 0.26 0.27 0.10 −5 200

buval

H −0.36 0.10 0.15 0.04 0.01 — —
cuval

H 11.2 3.1 2.7 1.1 0.3 — —

bdsea

H −0.222 0.062 0.090 0.022 0.006 — —

cdsea

H 14 4 15 1 1 — —

eterizations, however in general small values of the

subtraction constant are preferred. We also observe

a general trend for the saturation of the subtraction

constant at large values of Q2.

Compton Form Factors

The CFFs obtained in this analysis are shown as

a function of ξ for the exemplary kinematics of

t = −0.3 GeV2 and Q2 = 2 GeV2 in Figs. 11-14. In

complement of our results, we also show the curves

evaluated at the same kinematics for the GK [73–75]

and VGG [76, 78–80] models. In general, VGG is

closer to the results of our fit, which is expected,

as this model was primarily designed to reproduce

DVCS data in the valence region. We conclude that

both models overestimate the imaginary part of the

CFF H, which for VGG is compatible with the con-

clusions of Ref. [34], where local fits to recent JLab

DVCS data are reported.

Nucleon tomography

Exemplary distributions of u(x, b⊥) and∆uval(x, b⊥)

observables corresponding to Eqs. (17) and (18), re-

spectively, are shown in Fig. 15. These plots illus-

trate how parton densities (longitudinal polarization

of those partons) are distributed inside the unpo-

larized (longitudinally polarized) nucleon, however

without the possibility of showing the correspond-

ing uncertainties.

This difficulty can be overcome by showing

the normalized second moments of q(x,b⊥) and

∆qval(x,b⊥) distributions, see Eqs. (21) and (22)

and Figs. 16 and 17, respectively. One may note that

〈b2⊥〉q(x) → 0 when x → 1, which is expected, as in

this limit the position of the active quark is equiva-

lent to the center of the coordinate system in which

the impact parameter is defined. The corresponding

distributions illustrating the mean squared distance

between the active quark and the spectator system,

see Eq. (23), are shown in Fig. 18. In our studies

〈d2⊥〉q is finite when x → 1, which we consider to

be a welcome feature imposed by our Ansatz. We
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while the dashed one is for VGG [76, 78–80]. The curves are evaluated at the kinematics of experimental

data.

EFF unc.

Pol. PDF unc.

PDF unc.

PARTONS Fits 2018-1

0 ¹⁄₂ π π 1¹⁄₂ π 2 π
ϕ [rad]

-0.05

-0.025

0

0.025

0.05

0.075

0.1

d⁴
σ 

[n
b/

Ge
V⁴

]

EFF unc.

Pol. PDF unc.

PDF unc.

PARTONS Fits 2018-1

0 ¹⁄₂ π π 1¹⁄₂ π 2 π
ϕ [rad]

-0.05

-0.025

0

0.025

0.05

Δ(
d⁴

σ)
 [n

b/
Ge

V⁴
]

Fig. 7: Comparison between the results of this analysis, some selected GPD models and experimental data

published by Hall A in Ref. [117] for d4σ−UU (left) and ∆d4σ−LU (right) at xBj = 0.392, t = −0.233 GeV2 and
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also study a possible difference between 〈b2⊥〉uval
(x)

and 〈b2⊥〉dval(x), see Fig. 19. This plot suggests that

the distribution of uval(x,b⊥) is narrower (broader)

than dval(x,b⊥) in the region of high (low) x. A firm

conclusion however is not possible at this moment

because of the large uncertainties.

10 Summary

In this paper we proposed new parameterizations for

the border and skewness functions. Together with

the assumption about the analyticity properties of

the Mellin moments of GPDs, those two ingredients

allowed the evaluation of DVCS CFFs with the LO

and LT accuracy. The evaluation was done with the

dispersion relation technique and it included a deter-
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t = −0.3 GeV2 and Q2 = 2 GeV2. For further description see Fig. 6.

mination of the DVCS subtraction constant, which

is related to the QCD energy-momentum tensor.

In order to build and constrain our parameteri-

zations we utilized many basic properties of GPDs,

like their relation to PDFs and EFFs, the positivity

bounds, the power behavior in the limit of x → 1

and even the polynomiality property allowing the

evaluation of the subtraction constant by compar-

ing two equivalent ways of CFF computation. Our

parameterizations provide a genuine access to GPDs

at (x, 0, t) kinematics and therefore they can be used

for nucleon tomography.

We performed the analysis of PDFs and obtained

a set of functional parameterizations allowing the

reproduction of original values and uncertainties. A

small number of free parameters appearing in our

approach was constrained by EFF and DVCS data.

We considered all proton DVCS data, however not

all of them entered the final analysis because of the

used kinematic cuts and the initial data exploration.

Our work was done within the PARTONS project

that provides a modern platform for the study of

GPDs and related topics.
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The quality of our fits is quite good. The fit to

EFF data returns χ2 = 129.6 for 178 data points

and 9 free parameters, while that to DVCS data re-

turns χ2 = 2346.3 for 2600 data points and 13 free

parameters. The good performance proves that our

parameterizations, including the assumed analytic-

ity property, are not contradicted by the used ex-

perimental data. We consider the unsurprising dis-

crepancy between our results and the HERA data as

a possible manifestation of gluon effects, and the sur-

prising discrepancy with unpolarized cross sections

published by Hall A as a possible need for higher

twist or kinematic corrections.

Our analysis also favors small values of the sub-

traction constant. We extract the distributions of

q(x,b⊥) and ∆qval(x,b⊥) and we study the prop-

erties of those distributions.

This analysis is characterized by a careful prop-

agation of uncertainties coming from PDFs parame-

terizations, EFF and DVCS data, which we achieved

by using the replica method. The first successful

step towards the reduction of model uncertainties

has been done already by selecting PDFs parame-
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terizations based on the neural network technique.

We plan to extend the usage of neural networks to

other sectors of our future analyses for further re-

duction of model uncertainties.
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