Particle Identification

Lesson 1 - Detectors

M. Contalbrigo – INFN Ferrara

2nd European School on the Physics of the EIC and Related Topics, 22th June – 2nd July, 2025

Arguments

Particle-ID Detectors based on Tracking Calorimetry Passage through massive absorbers Kinematics Energy momentum balance Shower shape

Particle-ID Detectors as Tracking by-product

Particle-ID Sensors

Specific Particle-ID Detectors

Ionization Energy Loss Transition Detection

Multi-Anode Photomultipliers Micro-channel Plates Silicon Photomultipliers Low Gain Avalanche Photodiode

Time-of-Flight Cherenkov Radiation

PID from Tracking & Calorimetry

Process	Particle	Equipment
Passage through massive absorbers	Muons	Tracking
Kinematics (exclusive topology in decays or final state)	Hadrons	Tracking
Energy-momentum balance	Electrons / Gammas	Tracking / Calorimetry
Energy only	Neutrals	Calorimetry
Shower shape in calorimeters	Electrons / Gammas	Calorimetry

Tracking

Tracking

Process	Particle	Equipment
Kinematics (exclusive topology in decays or final state)	Hadrons	Tracking

Tracking / Calorimetry

Process	Particle	Equipment
Energy-momentum balance	Electrons / Gammas	Tracking / Calorimetry

NOMAD

Tracking / Calorimetry

Process	Particle	Equipment
Energy only	Neutrals	Calorimetry

Tracking / Calorimetry

PID as Tracking By-product

PID by Tracking

Assume to know the momentum (by tracking the bending in a magnetic field)

Get the mass by measuring the velocity (β c)

Process	Particle	Equipment
Energy Loss (dE/dx)	Hadrons	Tracking
Transition Radiation (TDR)	Electrons	Tracking sensitive to X-ray
Time-of-Flight (TOF)	Hadrons	Timing
Cherenkov Radiation	Hadrons	Cherenkov

Energy Loss

dE/dx

A by-product of a tracking detector

Average over several signals:

- many layers (straw tubes, silicon detctors)
- many electrodes over a big volume (TPC)

Different particles creates distinctive bands in the dE/dx vs p correlation plane

Identification is possible where the bands do not overlap (low energy)

A truncated mean is used to reject fluctuations

Truncated Mean

For thick layers or large sampling the dE distribution is approximated by a gaussian

For thin layers of small sampling rare hard-collisions matter (δ -rays, knock on electrons, bremmssthralung) and the dE distribution is described by a Landau distribution

A truncated mean is used to reject fluctuations or δ -rays and increase resolution

M. Contalbrigo

14

ALICE TPC

Time projection chamber

CMS Tracker

Momentum	Resolution in (%)								
(GeV)	Pixel	Silicon	Silicon+Pixel	MSGC	All Tracker				
1.0	11.82	8.21	6.94	68.67					
2.0	11.08	8.03	6.64	35.08					
3.0	11.74	7.46	6.15	26.82	6.01				
4.0	11.61	7.79	6.37	22.99	6.15				
5.0	10.06	7.23	6.04	20.94	5.81				
10.0	10.89	7.37	5.83	20.03	5.60				

0^{L. 300}, 1 1.5 2 2.5 3 3.5 4 4.5 5 p [GeV/c]

M. Contalbrigo

Transition Radiation

A particle passing the boundary between two media with different dielectric constants, will radiate photons. (predicted by Ginzburg & Frank 1946)

The energy radiated at one boundary: $E = \frac{1}{3} \alpha \gamma \hbar \omega_p \quad (\hbar \omega_p \approx 20 \text{ eV for a plastic foil})$ $E \propto \gamma$: potential for electron identification at high momenta! (for electrons: $\gamma > 1000$)

The photon emission angle peaks at: $\theta \propto \frac{1}{\gamma}$ (very forward)

Typical photon energy: $E_{\gamma} \approx \frac{1}{4} \gamma \hbar \omega_p$

i.e. several keV for electrons. (detectable in proportional chamber with high Z gas!)

Transition Radiation

NOMAD TRD

NOMAD: v_u --> v_e neutrino oscillations

Transition Radiation Detector

176 x 15 mm Straw tubes 80% Xe + 20% CH₄

9x modules

ATLAS TRT

Tracking and transition radiation detector

PID Sensors

Multi-Anode Photomultiplier (MA-PMT)

H8500 Flat Panel PMT

Compact Layout Cost-effective High packing-factor Position sensitive Fast, O(100 ps) TTS Low dark count

Cons.

Complex Layout Magnetic Field Sensitive High-Voltage (~1 kV)

PMT Photocatode

Thin layer of alkali metal (mix) with very low work function in vacuum (to prevent contaminatino)

Photocatode optimization depends on the detail structure of PMTs

R7600 Compact 2x2 cm² area

	Spectral	response	A	B	C	Maximun	n ratings		Cat	hode cł	naracter	istics	
	Panga Peak	Photo-	Window		Supply voltage between	Average anode	Lumi	nous	Blue sensitivity index (CS 5-58)		Red/ White	Radiant	
Type No.	(nm)	wavelength (nm)	material	material	/ stages	anode and cathode (V)	current in total (mA)	Min. (µA/lm)	Typ. (µA/Im)	Min.	Тур.	(R-68) Typ.	Typ. (mA/W)
R7600U	300 to 650	420	BA	К	MC/10	900	0.1	60	80	7.5	9.5	_	80
R7600U-01	300 to 850	400	MA	K	MC/10	900	0.1	150	200	_	—	0.2	65
R7600U-03	185 to 650	420	BA	U	MC/10	900	0.1	60	80	7.5	9.5	_	80
R7600U-20	300 to 920	530	ERMA	K	MC/10	900	0.1	350	500	—	—	0.4	78
R7600U-100	300 to 650	400	SBA	K	MC/10	900	0.1	90	105	12.5	13.5	—	110
R7600U-200	300 to 650	400	UBA	K	MC/10	900	0.1	110	135	14.0	15.5	_	130
R7600U-300	300 to 700	420	EGBA	K	MC/10	900	0.1	120	160	12.0	14.0	—	125
											E		11 - H - H

NOTE: A BA: Bialkali, MA: Multialkali, SBA: Super bialkali, UBA: Ultra bialkali, EGBA: Extended green bialkali, ERMA: Extended red multialkali

Similarly of ordinary PMT – dynode structure is substitute by MCP

MCP: thin glass plate with an array of holes (10-100 μ m diameter) continous dynode structure

Micro-Channel Plate (MCP-PMT)

 Gain is limited by space charge effects

Dynamic equilibrium --> gaussian pulse height distribution

Related to channel diameter

Photoelectron backscattering

Range equals twice the photocatode – MCP distance

long tail in time distribution and position resolution Related to channel diameter

Micro-Channel Plate (MCP-PMT)

Narrow amplification channel sustains magnetic field (axial direction)

Backscattering reduced

Timing degraded

Residual gas ionization

QE degradation due to ion bombardment

Thin Al foil (few μ m) block lon feedback and ½ electrons

Silicon Photomultiplier (SiPM)

SPAD array on a common Si substrate

SPAD: single photon avalanche diode working in Geiger mode

R: quench resitor to stop the avalanche

Intrinsic high dark-count rate due to thermal electron (indistinguishable from single-photon)

Possibility of

- single-photon detection
- photon counting

Silicon Photomultiplier (SiPM)

SPAD array on a common Si substrate

SPAD: single photon avalanche diode working in Geiger mode

R: quench resitor to stop the avalanche

prosCompact & robust layoutCost-effective production processHigh photon efficiency (40-50%)Good time resolution (~ 100 ps)

Insensitive to magneti field (used for NMR)

cons

High dark count rates

Radiation sensitive

5 cm

Dark counts can be mitigated by working at low temperature (about 0.5x every 10 degrees) Radiation damage can be cured with high-temperature annealing cycles

Specific PID Detectors

ePIC dRICH

Use momentum (tracking) to get the mass

Process	Particle	Equipment
Energy Loss (dE/dx)	Hadrons	Tracking
Transition Radiation (TDR)	Electrons	Tracking sensitive to X-ray
Time-of-Flight (TOF)	Hadrons	Timing
Cherenkov Radiation	Hadrons	Cherenkov

 $p = \gamma m \beta c$

Time of Flight

$$\Delta t_1 - \Delta t_2 = \frac{Lc}{2p^2} \left(m_1^2 - m_2^2 \right)$$

 $\Delta t = TOF$

L = flight distance

Start time t and distance L should be known*

Arrival time difference goes with m²

drops as p²

* With negligible uncertainty

Time-of-flight

$$n \sigma = \frac{\Delta t_1 - \Delta t_2}{\sigma} = \frac{L}{2c\sigma} \frac{(m_1^2 - m_2^2)}{p^2}$$

c ~ 10⁸ m/s = 0.3 m/ns = 0.03 m / 100 ps

Reference requirement is a at least 3σ separation

To double the reach in momentum one needs to quadruplicate distance or time precision

With typical values

leverage *L* of 1 m

time resolution $\sigma \leq 100 \text{ ps}$

raw limits are

e-π \lesssim 1 GeV/c k-π \lesssim 3 GeV/c p-k \lesssim 5 GeV/c

CLAS12 FTOF

$$\sigma_{TOF} = \sqrt{\sigma_0^2 + \frac{\sigma_1^2 + (\sigma_2 L/2)^2}{N_{pe}}}$$

 σ_0 intrinsic electronics resolution of the readout chain, independent of light level

 σ_1 time jitter in the combined single-photon response of the scintillation counter and PMT

 $\sigma_{\scriptscriptstyle 2}$ path length variations in the light collection, that scales with distance from source

$$N_{pe} = N_{pe}^0 \exp \Bigl(rac{L_0}{2\lambda_0} - rac{L}{2\lambda} \Bigr) {\cdot} F$$

 λ_{0} reference attenuation length

 L_0 length of the shorter bar

F PMT collection efficiency (active fractional area)

For large bars, the variations in path length are the dominant contribution to the resolution

Compact TOF

M. Bohm et al., JINST 11 (2016) C05018 - PANDA TOF

			-	-	-		
SiPM 3x3 mm ²	SciRod 120x5x5 mm ³ reado with s	out board SiPM	Table A.2: T thick, 300 mm dles. All resu quirements.	ime resolutions a long and 12 m ults are better a	and efficier nm wide BC than the ex	ncies for 3 r C-404 BM p sperimental	nm ad- re-
SciTil or SciRod e.g., 30x30x5 mm ³		trigger scintillator	Scintillator	SiPM	σ_T (ps)	ϵ (%)	
or 120x5x5 mm ³ ⁹⁰ Sr ■ ~3 mm Ø			BC-404 BC-404 BC-404	S13360-3075F S13360-3050F ASD-NUV3S-F	PE 59 PE 60 P-40 65	≥ 99.9 ≥ 99.7 ≥ 99.0	
1 mm aperture	90	Sr source	DC-404	ASD-110 V 35-1	40 05	≥ 99.0	
SiPM 3x3 mm ²							
(a) schematic	(b) photograph						
scintillator size	MPPC	BC408		BC420	de la		
$170 \times 5 \times 5 \mathrm{mm^3}$	S10362-050P	97 ± 19					
$120 \times 5 \times 5 \mathrm{mm^3}$	S12652 050C	81 ± 12		68 ± 10	2		
$50 \times 5 \times 5 \text{ mm}^3$	312032-030C	83 ± 6		62 ± 5	-		
$120 \times 10 \times 5 \mathrm{mm^3}$	S10362-100P	105 ± 18		93 ± 25	1		
$50 \times 10 \times 5 \mathrm{mm^3}$	S12572-050P	109 ± 16					

Option to cover the rod rims with SiPMs connected in series (full coverage with 1 readout channel)

T. Rostomyan, Nucl. Instrum. Meth. A

986 (2021) 164801 – MUSE experiment

ALICE TOF

Multigap resistive plate chamber

Cherenkov Radiation

Photo emission by a charged particle travelling in a dielectric medium with a velocity greater than the velocity of light in that medium:

$$\cos \theta_c = \frac{(c/n)\Delta t}{\beta c \Delta t} = \frac{1}{\beta n} \qquad \qquad \nu_{\text{particle}} > \frac{c}{n} \quad \left(\beta_{\text{thr}} = \frac{1}{n}\right)$$

Momentum threshold:

$$\epsilon = n - 1$$

$$\beta = \frac{p}{\sqrt{p^2 + m^2}} = \frac{1}{1 + \epsilon} \quad \Rightarrow \quad p = \frac{1}{\sqrt{2\epsilon + \epsilon^2}} \cdot m$$

Scales with particle mass Decreases with n

Photon yield:

$$\frac{d^2 N}{d\lambda dx} = \frac{2\pi z^2 \alpha}{\lambda^2} \left(1 - \frac{1}{\beta^2 n^2(\lambda)} \right)$$
$$\frac{dN}{dx} = 2\pi z^2 \alpha \sin^2 \theta_C \left(\frac{1}{\lambda_1} - \frac{1}{\lambda_2} \right)$$

$$\propto \sin^2 (\theta_c) = 1 - (1/\beta n)^2 \Rightarrow \text{ small when } n \approx 1!$$

$$\propto 1/\lambda^2 \Rightarrow \text{mostly blue light!} \qquad \qquad \hbar c = 2 \cdot 10^{-5} \text{ eVcm}$$

$$\frac{d^2 N_{ph}}{dL dE} [\text{cm}^{-1} \text{eV}^{-1}] = \frac{\alpha Z^2}{\hbar c} \sin^2 \theta = 370 Z^2 \sin^2 \theta \qquad \qquad E_{ph}[\text{eV}] = 2\pi \hbar \frac{c}{\lambda} = \frac{1240}{\lambda [\text{nm}]}$$

Cherenkov Radiators

Exp.	Mezzo	n	θ	$N_{ph} = 370 \cdot \mathrm{si}$	$n^2 \theta$	p_{π} in soglia	
			$\begin{pmatrix} o \end{pmatrix}$	$(eV^{-1}cm^{-1})$)	(GeV)	
	Helio	1.000035	0.48	0.026		16.1	
	Air	1.000283	1.36	0.208		5.6	
	Argon	1.000282	2.66	0.796		3.003	
E835	CO_2	1.000410	1.64	0.302		4.873	
	CH_4	1.000436					
LHCb/EIC	CF_4	1.0005	1.81	0.370	- 1 m	4.396	
E835	Freon 13	1.000720	2.17	0.530		3.677	
EIC	C_2F_6	1.00082	2.32	0.606		3.432	
E835	Freon 12	1.001080	2.66	0.796		3.003	
	Isobutano	1.00147	2.89	0.941		2.67	
Hermes/LHCb	C_4F_{10}	1.0014	3.03	1.033		2.55	
Hermes	Aerogel	1.03	13.9	21.23	few	0.55	
		(1.015-1.08)			cm		
	Freon	1.233	35.8	126.6		0.19	
	Aqua	1.33	41.2	160.8		0.15	
	_						
	Quarzo	1.46	46.7	196.4		0.126	
	BGO	2.15	62.3	290		0.070	

Real PID starts at 3x (kaon)

Photon Detection

Photon Yield

Spectrum of Cherenkov photons

Typical sensitivity (quantum efficiency) of a PMT

Chromatic Dispersion

Gas Radiator

Fig. 1. The refractivity of C_2F_6 (hexafluoroethane) expressed as $(n-1)\times 10^6$ is plotted versus the wavelength in nm. The solid line corresponds to the Sellmeier formula fitted with our measurements.

Refractive index as a function of the Cherenkov light wavelength for the aerogel with n = 1.05 and trad = 20 mm obtained selecting pions with 8 GeV/c momentum.

Sellmeier parameterization

$$n^2(\lambda) = 1 + \frac{p_1 \lambda^2}{\lambda^2 - p_2^2}$$

Aerogel Radiator

$$\sigma_{CH} = \sqrt{\sigma_{Co}^2 + \frac{\sigma_{em}^2 + \sigma_{ch}^2 + \sigma_{px}^2}{N_{pe}}}$$

- σ_{co} correlated uncertainty (tracking, misalignment, magnetic bending, multiple scattering,)
- σ_{em} $\,$ uncertainty on the photon emission point (radiator depth) $\,$
- σ_{ch} $\,$ radiator chromatic dispersion
- σ_{px} sensor spatial resolution (pixel size)

$$\frac{d^2 N}{dx d\lambda} = \left(\frac{d^2 N_C}{dx d\lambda}\right) Q E(\lambda) \epsilon_{pe} e^{-\frac{t_{rad} - x}{\Lambda(\lambda) \cos(\eta_C)}}$$

- $Q(\lambda)$ Sensor quantum efficiency
- $\Lambda(\lambda)$ Radiator transmission length

 ϵ_{pe} detection efficiency (sensor and mirror)

 $t_{\mbox{\tiny rad}}$ radiator thickness

CLAS12 RICH

Electrons: direct vs planar reflection

Electrons: direct vs spherical reflection

95 % kaon efficiency (<1% pion mis-ID)

BELLE ARICH

Limited space --> Proximity focusing & radiator focusing

High B field (1.5T) --> Custom Hybrid photon detector Super bialkali photocatode Gain 4.5 10⁶ PDE ~ 28 %

LHCb RICH

LHCb Precisin measurements of B-decays and search fro BSM signals

RICH1: Aerogel (5 cm) n=1.03 2-10 GeV/c

 C_4F_{10} (85 cm) n=1.0014 up to 70 GeV/c

RICH2: CF₄ (196 cm) n=1.0005 up to 100 GeV/c

Hybrid photomultiplier Photocatode @ - 20 kV Silicon sensor

DIRC

CsI Photocatode

ALICE: Quark-gluon plasma in heavy ion collisions

COMPASS: Nucleon structure and spectroscopy

RICHI

Large instrumented area

Multi-wired proportional chambers with a CsI photocatode

Quantum efficiency is around 16-24% at 170 nm

High-Momentum PID

SIDE

VIEW

BEAM

UV

mirror

Cosmic Rays

A cosmic gamma ray generates a particle shower in the atmosphere Showering charged particles generates Cherenkov radiation The number of detected photons is proportional to the initial energy Air refractive index is n = 1.00028 Threshold energy is 4.4 GeV for muons and 21 MeV for electrons

Cherenkov angle is 23 mrad ~ 1.3°

The shower maximum is at 10 km and generates a cone of 230 m

Extended detection pattern in space and time gives the direction

Arguments

Particle-ID Detectors based on Tracking Calorimetry Passage through massive absorbers Kinematics Energy momentum balance Shower shape

Particle-ID Detectors as Tracking by-product

Particle-ID Sensors

Specific Particle-ID Detectors

Ionization Energy Loss Transition Detection

Multi-Anode Photomultipliers Micro-channel Plates Silicon Photomultipliers Low Gain Avalanche Photodiode

Time-of-Flight Cherenkov Radiation