TEST OF INNOVATIVE PHOTON DETECTORS AND INTEGRATED ELECTRONICS FOR THE LARGE-AREA CLAS12 RICH

Contalbrigo Marco INFN Ferrara

On behalf of the CLAS12 RICH Group

7th NDIP Conference, 2nd July 2014, Tours - France

CEBAF Upgrade at Jefferson Lab

The CLAS12 Spectrometer

Ongoing upgrade of the CLAS detector. First beam expected in 2016.

Highly polarized 12 GeV electron beam

Luminosity up to 10^{35} cm⁻² s⁻¹

H and D polarized targets

Broad kinematic range coverage (current to target fragmentation)

3D structure of the nucleon by polarized deep-inelastic scattering

Hadron ID wanted for flavor separation

Crucial for the study of parton dynamics related to angular momentum and spin-orbit effects with flavor sensitivity.

The CLAS12 Spectrometer

Ongoing upgrade of the CLAS detector. First beam expected in 2016.

Highly polarized 12 GeV electron beam

Luminosity up to 10^{35} cm⁻² s⁻¹

H and D polarized targets

Broad kinematic range coverage (current to target fragmentation)

2 sectors to accomplish physics program, 1st sector by the end of 2016

3D structure of the nucleon by polarized deep-inelastic scattering

Hadron ID wanted for flavor separation

Crucial for the study of parton dynamics related to angular momentum and spin-orbit effects with flavor sensitivity.

The CLAS12 RICH Requirements

RICH Module General Assembly

Photon Detectors: MA-PMT

The only option to keep the schedule is the use of multi-anode photomultipliers (we consider the promising SiPM technology as the alternative)

64 6x6 mm² pixels cost effective device

- High sensitivity on VIS towards UV light
- Mature and reliable technology
- Large Area (5x5 cm²)
- High packing density (89 %)
- / Fast response

MAROC3 Front-End Electronics

MAROC3 Front-End Electronics

RICH Prototype at CERN-T9

GEM chamber layout

Cerenkov ADC

7th NDIP Conference, 2nd July 2014, Tours - France

Proximity Focusing RHIC Prototype

Clear hadron separation up to the CLAS12 maximum momentum

MA-PMT ps Pulsed Laser Test

H12700 with optimized dynode structure:

- higher collection efficiency
- / better SPE resolution
- enhanced cathode sensitivity
- slighter lower gain
- modest increase of dark current

900E

The Novel H12700 MA-PMT

Typical higher dark current for border pixels

The SiPM Test Prototype

The Custom SiPM Matrix@ -25°

The Custom SiPM Matrix@ -25°

7th NDIP Conference, 2nd July 2014, Tours - France

SiPM Prototype Results

Time resolution derived from time difference of SiPM hits after removal of the single channel vs trigger offsets: - minor residual contributions from geometry

- dominated by discriminator threshold jitter

SiPM Prototype Results

Neutron Irradiation Tests

Neutrons produced isotropically through d(230keV) t \rightarrow n α

 $\boldsymbol{\alpha}$ particles measured to monitor the intensity

- max flux 10^{11} s⁻¹ in 4π
- max neutron energy 14.6 MeV

7th NDIP Conference, 2nd July 2014, Tours - France

MA-PMT Irradiation Tests

No long-term effect on MA-PMT or MAROC3, null or negligible effects expected on specific components after ~ 20 years of CLAS12

SiPM Irradiation Tests

7th NDIP Conference, 2nd July 2014, Tours - France

RICH Front-End Electronics

Compatible with MA-PMTs or SiPM Matrices

FPGA board

ASICs board

RICH Project Landscape

RICH goal: $4\sigma \pi/K/p$ separation from 3 up to 8 GeV/c

GOAL: 1st sector ready by the end of 2016

INSTITUTIONS

INFN (Italy) Bari, Ferrara, Genova, L.Frascati, Roma/ISS

Jefferson Lab (Newport News, USA)

Argonne National Lab (Argonne, USA)

Duquesne University (Pittsburgh, USA)

Glasgow University (Glasgow, UK)

J. Gutenberg Universitat Mainz (Mainz, Germany)

Kyungpook National University, (Daegu, Korea)

University of Connecticut (Storrs, USA)

UTFSM (Valparaiso, Chile)

After-Pulses

SiPM Annealing

7th NDIP Conference, 2nd July 2014, Tours - France

SiPM Annealing

7th NDIP Conference, 2nd July 2014, Tours - France

The Hybrid Optics Design

The Hybrid Optics Design

The Hybrid Optics Design

MA-PMT SPE Resolution

Contalbrigo M.

7th NDIP Conference, 2nd July 2014, Tours - France

Aerogel Radiator

Achieved ~ 0.00050 μ m⁴ cm⁻¹ clarity for 115x11.5 cm² tiles at n=1.05*

(comparable with LHCb at n=1.03)

*Budker and Boreskov Institutes of Novosibirsk

The Custom SiPM Matrix @ +25°

Contalbrigo M.

7th NDIP Conference, 2nd July 2014, Tours - France

Novel H12700 MA-PMT

Typical higher dark current for border pixels

1:2 typical gain variation

H8500 MA-PMT Characterization

SPE loss limited to ~15% above 1040V and almost uniform over 28 MA-PMTs

Up to 1:4 pixel gain variation can be compensated by the read-out electronics

H8500