JEFFERSON LAB HALL-B RESULTS

Contalbrigo Marco INFN Ferrara

Spin Structure – EINN15 November 3, 2015 Paphos

The Spin Degree of Freedom

In our exploration of the QCD micro-world

Fundamental: do not neglect spin !!

Two questions in Hadronic Physics await explanation since too long

The 3D Nucleon Structure

CEBAF Upgrade at Jefferson Lab

Beam is being delivered to the Halls

Contalbrigo M.

The SIDIS Landscape

Limit defined by luminosity

Contalbrigo M.

Spin Structure – EINN15, 3rd November 2015, Paphos

Hall-B Mission

High luminosity up to 10 ³⁵ cm ⁻² s ⁻¹ Large acceptance (current & target fragmentation) Polarized beam and targets Multi-particle final state measurements
Multi-particle final state measurements

6 GeV

12 GeV

The 3D Nucleon Structure

DIS Cross-Section

DIS Cross-Section

Wide kinematic coverage is needed to resolve the convolution

$$F_{UU} = f \otimes D = x \sum_{q} e_{q}^{2} \int d^{2} p_{T} d^{2} k_{T} \ \delta^{(2)}(\mathbf{P}_{h\perp} - z\mathbf{k}_{T} - \mathbf{p}_{T}) \ w(\mathbf{k}_{T}, \mathbf{p}_{T}) \ f^{q}(x, k_{T}^{2}) \ D^{q}(z, p_{T}^{2})$$

$$\frac{d^{6}\sigma}{dxdQ^{2}dzdP_{h}d\phi d\phi_{S}} \propto \left[F_{UU} + \varepsilon \cos(2\phi)F_{UU}^{\cos(2\phi)}\right] + S_{L}\left[\varepsilon \sin(2\phi)F_{UL}^{\sin(2\phi)}\right]$$
$$+ S_{T}\left[\sin(\phi - \phi_{S})F_{UT}^{\sin(\phi - \phi_{S})} + \varepsilon \sin(\phi + \phi_{S})F_{UT}^{\sin(\phi + \phi_{S})} + \varepsilon \sin(3\phi - \phi_{S})F_{UT}^{\sin(3\phi - \phi_{S})}\right]$$
$$+ S_{L}\lambda_{e}\left[\sqrt{1 - \varepsilon^{2}}F_{LL}\right] + S_{T}\lambda_{e}\left[\sqrt{1 - \varepsilon^{2}}\cos(\phi - \phi_{S})F_{LT}^{\cos(\phi - \phi_{S})}\right] + O\left(\frac{1}{Q}\right)$$

Spin Structure – EINN15, 3rd November 2015, Paphos

Unpolarized TMDs

Scattering on deuterium with proton spectator tagging

Extending the study to the transverse momentum

TMD Evolution

Drell-Yan

3

 $\pi^{-}N {\longrightarrow} \mu^{+}\mu^{-}X$

TMD evolution:

Quark Helicity

H. Avakian et al. E12-07-107 @ 12 GeV

Quark Helicity

Transversity @ CLAS12

Distributions:

Contalbrigo M.

Spin Structure – EINN15, 3rd November 2015, Paphos

Spin-Orbit Correlations @ CLAS

 $\sigma_{UL}^{\sin 2\phi} \propto h_{1L} \otimes H_1^{\perp}$

First indication of non-zero $A_{UL}^{sin\phi}$ for pions Potentially significant quark spin-orbit correlations

quark polarisation

H. Avakian et al., PRL105: 262002 (2010) E12-07-107 (pions), E12-009-009 (kaons) @12 GeV

Spin Structure – EINN15, 3rd November 2015, Paphos

Higher-twists @ CLAS

Sivers Mapping @ CLAS12

Contalbrigo M.

Spin Structure – EINN15, 3rd November 2015, Paphos

The 3D Nucleon Structure

Generalized parton distributions

Exclusive reaction:

- For spin-1/2 target 4 chiral-even leading-twist quark GPDs: $H, E, \widetilde{H}, \widetilde{E}$
- H, \widetilde{H} conserve nucleon helicity, E, \widetilde{E} involve nucleon helicity flip
- Sensitivity of different final states to different GPDs
- DVCS $(\gamma) \rightarrow H, E, \widetilde{H}, \widetilde{E}$
- Vector mesons $(\rho, \omega, \phi) \rightarrow H, E$
- Pseudoscalar mesons $(\pi, \eta) \rightarrow \widetilde{H}, \widetilde{E}$

Collinear PDFs as forward limit:

$$\int d^2 b_T H(x, b_T) = f_1(x)$$

 $\int d^2 b_T \tilde{H}(x, b_T) = g_1(x)$

Access OAM $L_q = J_q - \frac{1}{2}\Delta\Sigma$ via Ji sum rule $J_q = \lim_{t \to 0} \int_{-1}^{1} dx \, x \Big[H_q(x,\xi,t) + E_q(x,\xi,t) \Big]$

DVCS Interference

Informations on the real and imaginary part of the QCD scattering amplitude $\frac{d^{4}\sigma}{dQ^{2} dx_{B} dt d\phi} \propto (|\mathcal{T}_{\text{DVCS}}|^{2} + |\mathcal{T}_{\text{BH}}|^{2} + \mathcal{I})$ $\frac{d^{4}\sigma}{dQ^{2} dx_{B} dt d\phi} \propto (|\mathcal{T}_{\text{DVCS}}|^{2} + |\mathcal{T}_{\text{BH}}|^{2} + \mathcal{I})$ $\frac{d^{4}\sigma}{dQ^{2} dx_{B} dt d\phi} = \frac{d^{4}\sigma}{dQ^{2} dx_{B} dt d\phi}$

DVCS Interference

Informations on the real and imaginary part of the QCD scattering amplitude

 $\frac{d^4\sigma}{dQ^2\,dx_B\,dt\,d\phi} \propto (|\mathcal{T}_{\rm DVCS}|$

\mathbf{A}_{LU}

S. Stepanyan et al., Phys. Rev. Lett. 87, 182002 (2001).

S. Chen et al., Phys. Rev. Lett. 97, 072002 (2006).

DVCS A_{LU}, A_{UL}, A_{LL} @ CLAS

Simultaneous CFF extraction from three observables in a common kinematics

E. Seder et al, PRL114, 032001 (2015) [arXiv: 1410.6615]

S. Pisano et al., PRD91, 5 052014 (2015) [arXiv: 1501.07052]

DVCS X-sec on Proton @ CLAS

H. S. Jo et. al. [arXiv: 1504.02009]

Impact of CLAS12 Data

 ϕ distribution in any (x, -t, Q²) bin CLAS acceptance & efficiencies included

Spin Structure – EINN15, 3rd November 2015, Paphos

Quark Orbital Momentum @ CLAS12

$$J_q = \frac{1}{2} \int_{-1}^{+1} dx \, x \, \left[H^q(x,\xi,t=0) + E^q(x,\xi,t=0) \right]$$

To access $E_u \& E_d$ both $E_p \& E_n$ are needed

 $(H,E)_{u}(\xi,\xi,t) = 9/15[4(H,E)_{p}-(H,E)_{n}]$

 $(H,E)_{d}(\xi,\xi,t) = 9/15[4(H,E)_{n}-(H,E)_{p}]$

Conclusions

CLAS @ HallB: a wide-acceptance high-luminosity high-polarization experiment for a comprehensive study of the partonic transverse degree of freedoms in the nucleon

Precise mapping of TMDs (pdf & FF) and GPDs in a multi-D approach

- Constrain models in the valence region
- Test factorization
- Study higher twist effects
- Investigate non-perturbative to perturbative transition (along P_T)
- Flavor separation via proton and deuteron targets and hadron ID
- Test of Lattice QCD calculations: tensor charge
- Access to OAM