EXPERIMENTAL OVERVIEW

Contalbrigo Marco INFN Ferrara

QCD-N'12 October 22, 2012 Bilbao

The Spin Degree of Freedom

Spin degrees of freedom can explain otherwise surprising phenomena and bring new insights into nuclear matter structure

Fundamental: do not neglect it !!

The Spin Degree of Freedom

In our exploration of the QCD micro-world

Fundamental: do not neglect spin !!

Two questions in Hadronic Physics await explanation since too long

Proton Spin Budget

Single Spin Asymmetries

Contalbrigo M.

QCD-N'12, 22nd October 2012, Bilbao

HERA F₂

LHC gauge boson production

Contalbrigo M.

QCD-N'12, 22nd October 2012, Bilbao

Parton Polarization

Parton Helicity from Inclusive DIS

Contalbrigo M.

QCD-N'12, 22nd October 2012, Bilbao

Parton Helicity from SIDIS

Parton Helicity from SIDIS

Parton Fragmentation from SIDIS

LO interpretation:

$$M_N^h = \frac{1}{N_N^{DIS}(Q^2)} \frac{dN_N^h(z,Q^2)}{dz} = \frac{\sum_q e_q^2 \int dx \ f_{1q}(x,Q^2) D_{1q}^h(z,Q^2)}{\sum_q e_q^2 \int dx \ f_{1q}(x,Q^2)}$$

SIDIS data constrain fragmentation at low c.m. energy and bring enhanced flavor sensitivity

A lot of data but only preliminary results

Parton Helicity from W

Contalbrigo M.

QCD-N'12, 22nd October 2012, Bilbao

Gluon Helicity

х

Gluon Helicity

Landscape @ RHIC

Parton Helicity

QCD-N'12, 22nd October 2012, Bilbao

From Lattice

Contalbrigo M.

QCD-N'12, 22nd October 2012, Bilbao

From Lattice

The Spin Structure of the Nucleon

Describe the complex nucleon structure in terms of partonic degrees of freedom of QCD

Important testing ground for QCD

Latest news from Deep Inelastic Scattering (DIS) Phys Lett B647 (2007) 8-17 Phys. Rev. D 75 (2007) 012007

Proton's spin

Understanding of the orbital motion of quarks is crucial!

The Spin Surprising Phenomenology

<

The Real Experience: 3D !

Quantum phase-space distributions of quarks

 $W_{p}^{q}(x,k_{T},r)$ "Mother" Wigner distributions

Tomography

Contalbrigo M.

QCD-N'12, 22nd October 2012, Bilbao

Generalized parton distributions

Encompass parton distributions and form factors

longitudinal momentum and transverse spatial position correlated information

Access OAM $L_q = J_q - \frac{1}{2}\Delta\Sigma$ via Ji sum rule

 $J_q = \lim_{t \to 0} \int_{A} dx \, x \Big[H_q(x,\xi,t) + E_q(x,\xi,t) \Big]$

- Sensitivity of different final states to different GPDs
- <u>For spin-1/2 target</u> 4 chiral-even
 leading-twist quark GPDs: H,E,H,E
- H, \widetilde{H} conserve nucleon helicity, E, \widetilde{E} involve nucleon helicity flip
- DVCS $(\gamma) \rightarrow H, E, \widetilde{H}, \widetilde{E}$
- Vector mesons $(\rho, \omega, \phi) \rightarrow H, E$
- Pseudoscalar mesons $(\pi, \eta) \rightarrow \widetilde{H}, \widetilde{E}$

VM production

Gluon Imaging

DVCS Interference

DVCS Interference

QCD-N'12, 22nd October 2012, Bilbao

DVCS Repository

DVCS Repository

DVCS Beam-Spin Asymmetry

 $\mathcal{A}_{LU}(\phi)$: $d\sigma(\vec{e},\phi) - d\sigma(\vec{e},\phi) \propto \operatorname{Im}[F_1\mathcal{H}] \cdot \sin\phi$

QCD-N'12, 22nd October 2012, Bilbao

DVCS Beam-Charge Asymmetry

 $\mathcal{A}_{C}(\phi)$: $d\sigma(e^{+},\phi) - d\sigma(e^{-},\phi) \propto \operatorname{Re}[F_{1}\mathcal{H}] \cdot \cos\phi$

 $Re(\mathcal{F}_{1}\mathcal{H})$

The Pure DVCS Sample

 ${\mathcal H}$

The Pure DVCS Sample

Contalbrigo M.

QCD-N'12, 22nd October 2012, Bilbao

 ${\mathcal H}$

DVCS Repository

DVCS & OAM

Contalbrigo M.

 $Im(\mathcal{F}_2\mathcal{E})$

DVCS @ COMPASS 2014+

Contalbrigo M.

DVCS @ CLAS12 2015+

Broad program with polarized beam + long. & transversely polarized target @ L $\sim 10^{35}$ cm⁻² s⁻¹

QCD-N'12, 22nd October 2012, Bilbao

Quantum phase-space distributions of quarks

 $W_{p}^{q}(x,k_{T},r)$ "Mother" Wigner distributions

Spin-Orbit Effects

Leading Twist TMDs

quark polarisation

Number density and helicity:

Focusing here in transverse momentum dependence

Transversity:

Survives transverse momentum integration (missing leading-twist collinear piece)

Differs from helicity due to relativistic effects and no mix with gluons in the spin-1/2 nucleon

quark polarisation

Off-diagonal elements:

Interference between wave functions with different angular momenta: contains information about parton orbital angular motion and spin-orbit effects

Testing QCD at the amplitude level

T-odd elements:

- sign change between DY and SIDIS
 - universality of TMDs

Strict prediction from TMDs + QCD !

First evidences

 $\sigma_{UT}^{\sin(\phi+\phi_S)}$ $\propto h_1 \otimes H_1^{\perp}$

SIDIS: ep**→**e'hX

 $\sigma_{UT}^{\sin(\phi-\phi_S)} \propto f_{1T}^{\perp} \otimes D_1$

2005: First evidence from HERMES measuring SIDIS on proton

A. Airapetian et al, Phys. Rev. Lett. 94 (2005) 012002

Non-zero transversity !! Non-zero Collins function !!

Non-zero Sivers function !!

Physics reactions

Jefferson Lab

Fermilab

 $DF \otimes \sigma^{qq \rightarrow qq} \otimes FF$

Fragmentation @ e+e- Colliders $H_1^{\perp} \otimes H_1^{\perp}$

The SIDIS case

$$\frac{d^{6}\sigma}{dx \, dy \, dz \, d\phi_{S} d\phi \, dP_{h\perp}^{2}} \underset{Twist}{\overset{Leading}{\propto}} S_{T} \left\{ \sin(\phi - \phi_{S}) F_{UT,T}^{\sin(\phi - \phi_{S})} \right\}$$
$$+ S_{T} \left\{ \varepsilon \sin(\phi + \phi_{S}) F_{UT}^{\sin(\phi + \phi_{S})} + \varepsilon \sin(3\phi - \phi_{S}) F_{UT}^{\sin(3\phi - \phi_{S})} \right\}$$
$$+ S_{T} \lambda_{e} \left\{ \sqrt{1 - \varepsilon^{2}} \cos(\phi - \phi_{S}) F_{LT}^{\cos(\phi - \phi_{S})} \right\} + \dots$$

The SIDIS case

NUMBER DENSITY

The azimuthal modulation

Contalbrigo M.

dơ/d∲_h (arbitrary units)

QCD-N'12, 22nd October 2012, Bilbao

 $h_1^{\perp} \otimes H_1^{\perp}$

The Lam-Tung relation

Contalbrigo M.

QCD-N'12, 22nd October 2012, Bilbao

 $h_1^{\perp} \otimes h_1^{\perp}$

The P_{hi}-unintegrated multiplicities $(f_1 \otimes D_1)$

arXiv: 1008.5125

Disentanglement of z and $P_{h I}$: access to the transverse intrinsic quark k_{T} and fragmentation p_{T}

i.e. from gaussian anstaz

 $\left\langle P_{h\perp}^2 \right\rangle = z^2 \left\langle k_T^2 \right\rangle + \left\langle p_T^2 \right\rangle$

Contalbrigo M.

QCD-N'12, 22nd October 2012, Bilbao

 $P_{h1}^{2}(GeV^{2})$

0.20<z<0.25</p>

0.25<z<0.30

0.30<z<0.35

The Evolution

 $f_1 \otimes D_1$

The SIDIS cos2¢ dependence

 $h_1^{\perp} \otimes H_1^{\perp}$

The SIDIS cos2¢ dependence

COMPASS⁶LiD (25% of 2004 data)

Multidimensional analysis is mandatory

Clean high statistics samples from COMPASS-II and CLAS12

 $h_1^{\perp} \otimes H_1^{\perp}$

The SIDIS Landscape 2014+

The Drell-Yan Landscape 2014+

TRANSVERSITY

(THE COLLINEAR MISSING PIECE)

The Collins SIDIS amplitude

CLEAR NON ZERO SIGNALS!

Contalbrigo M.

 $h_1 \otimes H_1^\perp$

Two hadron asymmetries

Contalbrigo M.

 $h_1 \otimes H_1^{\triangleleft}$

Transversity Signals

Polarized Drell-Yan 2018+

(THE TMD CHALLENGE)

The Sivers signals

Contalbrigo M.

QCD-N'12, 22nd October 2012, Bilbao

The Sivers challenges - I

The Sivers challenges - II

The Sivers challenges - II

Contalbrigo M.

QCD-N'12, 22nd October 2012, Bilbao

SIDIS @ JLab12 2014+

Hall-C

Hall-A

Hall-A

Super High Momentum Spectrometer (SHMS) unpolarized SIDIS, hadron ID

Spectrometer Pair, polarized ⁹He target up to to 10³⁷ cm⁻² s⁻¹ hadron ID

Hall-B

CLAS12 H,D polarized targets up to 10³⁵ cm⁻² s⁻¹ complete" acceptance, hadron ID

SOLID ³He, NH₃ polarized targets up to 10³⁶ cm⁻² s⁻¹ large acceptance, pion ID

Contalbrigo M.

SIDIS @ JLab12 2014+

Contalbrigo M.

QCD-N'12, 22nd October 2012, Bilbao

The Spin Physics Landascape

