OVERVIEW OF TMD MEASUREMENTS

Contalbrigo Marco INFN Ferrara

Partons in Nucleons and Nuclei September 30, 2011 Marrakech

Quantum phase-space distributions of quarks

 $W_{p}^{q}(x,k_{T},r)$ "Mother" Wigner distributions

Leading Twist TMDs

quark polarisation

Number density and helicity:

Focusing here in transverse momentum dependence

Transversity:

Survives transverse momentum integration (missing leading-twist collinear piece)

Differs from helicity due to relativistic effects and no mix with gluons in the spin-1/2 nucleon

quark polarisation

Off-diagonal elements:

Interference between wave functions with different angular momenta: contains information about parton orbital angular motion and spin-orbit effects

Testing QCD at the amplitude level

T-odd elements:

- sign change between DY and SIDIS
 - universality of TMDs

Strict prediction from TMDs + QCD !

Physics reactions

Jefferson Lab

Fermilab

 $\otimes \sigma^{qq \rightarrow qq} \otimes \overline{FF}$

The SIDIS case

$$\frac{d^{6}\sigma}{dx \, dy \, dz \, d\phi_{S} d\phi \, dP_{h\perp}^{2}} \overset{Leading}{\propto} S_{T} \left\{ \sin(\phi - \phi_{S}) F_{UT,T}^{\sin(\phi - \phi_{S})} \right\}$$
$$+ S_{T} \left\{ \varepsilon \sin(\phi + \phi_{S}) F_{UT}^{\sin(\phi + \phi_{S})} + \varepsilon \sin(3\phi - \phi_{S}) F_{UT}^{\sin(3\phi - \phi_{S})} \right\}$$
$$+ S_{T} \lambda_{e} \left\{ \sqrt{1 - \varepsilon^{2}} \cos(\phi - \phi_{S}) F_{LT}^{\cos(\phi - \phi_{S})} \right\} + \dots$$

The SIDIS case

First evidences

 $\propto h_1 \otimes H_1^{\perp}$

SIDIS: ep→e'hX

 $\sigma_{UT}^{\sin(\phi-\phi_S)} \propto f_{1T}^{\perp} \otimes D_1$

2005: First evidence from HERMES measuring SIDIS on proton

A. Airapetian et al, Phys. Rev. Lett. 94 (2005) 012002

Non-zero transversity !! Non-zero Collins function !!

Non-zero Sivers function !!

 $\sigma_{UT}^{\sin(\phi+\phi_S)}$

NUMBER DENSITY & HELICITY

(THE BASELINE)

The hadron multiplicities

LO interpretation:

$$M_N^h = \frac{1}{N_N^{DIS}(Q^2)} \frac{dN_N^h(z,Q^2)}{dz} = \frac{\sum_q e_q^2 \int dx \ f_{1q}(x,Q^2) D_{1q}^h(z,Q^2)}{\sum_q e_q^2 \int dx \ f_{1q}(x,Q^2)}$$

SIDIS data constrain fragmentation at low c.m. energy and bring enhanced flavor sensitivity

Proton-deuteron asymmetry:

$$A_{d-p}^{h} = \frac{M_d^h - M_p^h}{M_d^h + M_p^h}$$

Reflects different flavor content Correlated systematics cancels

 $f_1 \cdot D_1$

The $P_{h_{1}}$ -unintegrated multiplicities $f_{1} \otimes D_{1}$

Disentanglement of z and $P_{h \perp}$: access to the transverse intrinsic quark k_T and fragmentation p_T

i.e. from gaussian anstaz

 $\left\langle P_{h\perp}^2 \right\rangle = z^2 \left\langle k_T^2 \right\rangle + \left\langle p_T^2 \right\rangle$

Contalbrigo M.

PANIN 11, 30th September 2011, Marrakech

The evolution

Contalbrigo M.

 $f_1 \otimes D_1$

The A_{LL} Asymmetry

 $g_1 \otimes D_1$

TRANSVERSITY

(THE COLLINEAR MISSING PIECE)

The Collins fragmentation

 $H_1^\perp \otimes H_1^\perp$

The Collins fragmentation

Contalbrigo M.

PANIN 11, 30th September 2011, Marrakech

 $H_1^{\perp} \otimes H_1^{\perp}$

The Collins SIDIS amplitude

Contalbrigo M.

 $h_1 \otimes H_1^\perp$

The Collins SIDIS amplitude

Contalbrigo M.

PANIN 11, 30th September 2011, Marrakech

 $h_1 \otimes H_1^\perp$

Transversity signals

 $h_1 \otimes H_1^\perp$

Two hadron asymmetries

Contalbrigo M.

 $h_1 \otimes H_1^{\triangleleft}$

Transversity signals

 $h_1 \otimes H_1^{\triangleleft}$

Transversity signals

 $h_1 \otimes H_1^{\triangleleft}$

(THE TMD CHALLENGE)

The Sivers signals

The Sivers signals

Contalbrigo M.

The Sivers challenges

PANIN 11, 30th September 2011, Marrakech

The inclusive hadron SSA

Contalbrigo M.

PANIN 11, 30th September 2011, Marrakech

Inclusive hadron SSA in SIDIS

CAHN & BOER-MULDERS

Naïve-T-odd Chirally-odd Spin effect in unpolarized reactions

(THE NEGLECTED EFFECTS)

The Lam-Tung relation

Contalbrigo M.

PANIN 11, 30th September 2011, Marrakech

 $h_1^{\perp} \otimes h_1^{\perp}$

The azimuthal modulation

dơ/d∲_h (arbitrary units)

 $h_1^{\perp} \otimes H_1^{\perp}$

The SIDIS cos2¢ dependence

 $h_1^{\perp} \otimes H_1^{\perp}$

 $f_1 \otimes D_1$

TMDs describe a new class of phenomena providing novel insights into the rich nuclear structure

SIDIS and e⁺e⁻ experiments provide evidence of non-zero TMDs

First generation experiments provide promises but also open questions

- Full coverage of valence region not achieved
- Limited knowledge on transverse momentum dependences
- Role of the higher twist to be quantified
- Evolution properties to be defined
- Flavor decomposition to be refined

The TMDs Landascape

The 3D description of the nucleon

The hadron multiplicities

Contalbrigo M.

PANIN 11, 30th September 2011, Marrakech

 $f_1 \otimes D_1$

The Collins fragmentation

 $H_1^\perp \otimes H_1^\perp$

PRETZELOSITY

Sensitive to the D-wave component and the non spherical shape of the nucleon

(THE D-WAVE)

The Pretzelosity

Contalbrigo M.

 $h_{1T}^{\perp} \otimes H_1^{\perp}$

WORM GEAR

(THE STANDARD OAM EFFECT)

The A_{UL} Asymmetry

 $h_{1L}^{\perp} \otimes H_1^{\perp}$

The A_{LT} Asymmetry

Higher-twist effects

