Hadron Structure from Deep-Inelastic Scattering Experiments

Marco Contalbrigo – INFN Ferrara

GGI School – Frontiers in Nuclear and Hadronic Physics - Firenze, 28 February 2025

Deep-Inelastic Scattering

SFs (x,Q^2)

Structure functions (unpolarized, helicity)

Sum over quark charges

$$d^2 \mathcal{S} \models F_2 \left(= \mathop{\text{a}}_{q} e_q^2 q(x) \right)$$

$$DFs(x,Q^2) + FF(z,Q^2)$$

Parton distributions + fragmentation

 $D_u^{p_+}(z) > D_u^{p_-}(z)$

Flavor sensitivity

$$d^3 S^h \mu \mathop{a}\limits_{q} e_q^2 q(x) D_q^h(z)$$

Parton Content

Contalbrigo M.

GGI School FNHP, 28th February 2025

HERA Legacy and Perturbative QCD

High-Energy e-p

Good perturbative description (hard gluon emission)

 $p_T > 5 \text{ GeV}$ Q² > 5 GeV²

Part in a $P_T << Q TMD$ regime

H1 [arXiv: 1611.03421]

The QCD View

Non Perturbative Physics

Contalbrigo M.

Can QCD be a precision science ?

Should not be confused with pQCD, which already can, but is not touching the intimate nature of the strong interaction

Proton Spin Budget

Single Spin Asymmetries

Still Surprising Proton

Is there a collective motion in small systems ?

$$\frac{\mathrm{d}N}{\mathrm{d}\varphi} = \frac{N_0}{2\pi} \left(1 + 2v_1 \cos(\varphi - \Psi_1) + \frac{2v_2 \cos[2(\varphi - \Psi_2)]}{2\pi} + \dots \right)$$

Contalbrigo M.

The QCD View

Dynamic Spin

- Parton polarization
- Orbital motion
- Form Factors
- Magnetic Moment

Hadronization

- Spin-orbit effects
- Parton energy loss
- Jet quenching

Parton Correlations

- dPDFs
- Short range
- MPI

Color charge density

- Nucleon tomography
- Diffractive physics
- Gluon saturation
- Color force

Deep-Inelastic Scattering

Rich and Involved phenomenology !!

The 3D Nucleon Structure from SIDIS

The 3D Nucleon Structure from SIDIS

Physics Channels

Contalbrigo M.

SIDIS Cross-Section and TMDs

Wide kinematic coverage is needed to resolve the convolution

$$F_{UU} = f \stackrel{\wedge}{\land} D = x \stackrel{\circ}{\bigcirc}_{q} e_{q}^{2} \stackrel{\circ}{\not} d^{2} p_{T} d^{2} k_{T} \quad \mathcal{O}^{(2)}(\mathbf{P}_{h^{\wedge}} - z\mathbf{k}_{T} - \mathbf{p}_{T}) \quad w(\mathbf{k}_{T}, \mathbf{p}_{T}) \quad f^{q}(x, k_{T}^{2}) \quad D^{q}(z, p_{T}^{2})$$

Contalbrigo M.

SIDIS Cross-Section and TMDs

$$\frac{d^{6}S}{dxdQ^{2}dzdP_{h_{L}}dfdf_{S}} \overset{LT}{\overset{f_{1}}{\mapsto}} \overset{f_{1}}{\mapsto} \overset{h_{1}^{\perp}}{\overset{h_{1}^{\perp}}{\mapsto}} \overset{h_{1}^{\perp}}{\overset{h_{1}^{\perp}}{\mapsto}} \overset{h_{1}^{\perp}}{\mapsto} S_{L} \overset{h_{1}^{\perp}}{\overset{h_{2}^{\perp}}{\otimes}} Sin(2f)F_{UL}^{sin(2f)}) \overset{h_{1}^{\perp}}{\mapsto} S_{L} \overset{h_{1}^{\perp}}{\overset{h_{1}^{\perp}}{\otimes}} \overset{h_{1}^{\perp}}{\xrightarrow} Sin(f-f_{S})} + e\sin(f+f_{S})F_{UT}^{sin(f+f_{S})} + e\sin(3f-f_{S})F_{UT}^{sin(3f-f_{S})}) \overset{h_{1}^{\perp}}{\xrightarrow} Sin(3f-f_{S})} \overset{h_{1}^{\perp}}{\overset{g_{1}^{\perp}}{\xrightarrow}} + S_{L}/\overset{\acute{e}}{\overset{e}{\ominus}} \sqrt{1-e^{2}}F_{LL}\overset{\check{u}}{\overset{h}{\cup}} + S_{T}/\overset{\acute{e}}{\overset{e}{\ominus}} \sqrt{1-e^{2}}\cos(f-f_{S})F_{LT}^{cos(f-f_{S})}) \overset{\check{u}}{\overset{h}{\overset{h}{\to}} + O\overset{\mathfrak{a}}{\overset{e}{\ominus}} \frac{1}{\overset{\check{o}}{\overset{\check{e}}{\ominus}} \overset{\check{o}}{\xrightarrow}} \overset{\check{e}}{\overset{\check{e}}{\otimes}} \sqrt{1-e^{2}}\cos(f-f_{S})F_{LT}^{cos(f-f_{S})}) \overset{\check{u}}{\overset{\check{u}}{\overset{\check{e}}{\to}} + O\overset{\mathfrak{a}}{\overset{\check{e}}{\ominus}} \frac{1}{\overset{\check{o}}{\overset{\check{e}}{\to}}} \overset{\check{o}}{\overset{\check{e}}{\to}} \overset{\check{e}}{\overset{\check{e}}{\to}} \overset{\check{e}}{{\to}} \overset{\check{e}}{\overset{\check{e}}{\to}} \overset{\check{e}}{{\check{e}}} \overset{\check{e}}{{\check{e}}}} \overset{\check{e}}{{\check{e}}} \overset{\check{{e}}}{{\check{e}}} \overset{\check{e}}{{\check{e}}}$$

Access to independent correlators bringing information on the confinement dynamics

 $f(x) \longrightarrow f(x,k_T)$

$$D(x) \implies D(z,p_T)$$

SIDIS Cross-Section and TMDs

$$\frac{d^{6}S}{dxdQ^{2}dzdP_{h_{L}}dfdf_{S}} \overset{LT}{\overset{f_{1}}{\mapsto}} \overset{f_{1}}{\mapsto} \overset{h_{1}^{\downarrow}}{\mapsto} (f - f_{S})F_{UU}^{\cos(2f)}\dot{\underline{l}} + S_{L}\dot{\underline{\ell}} \dot{\underline{\ell}} e \sin(2f)F_{UL}^{\sin(2f)}\dot{\underline{l}} \\ + S_{T}\dot{\underline{\ell}} \dot{\underline{\ell}} \sin(f - f_{S})F_{UT}^{\sin(f - f_{S})} + e \sin(f + f_{S})F_{UT}^{\sin(f + f_{S})} + e \sin(3f - f_{S})F_{UT}^{\sin(3f - f_{S})}\dot{\underline{l}} \\ + S_{L}/\overset{\dot{\underline{\ell}}}{\underline{e}} \sqrt{1 - e^{2}}F_{LL}\overset{\dot{\underline{l}}}{\underline{l}} + S_{T}/\overset{\dot{\underline{e}}}{\underline{e}} \sqrt{1 - e^{2}}\cos(f - f_{S})F_{LT}^{\cos(f - f_{S})}\dot{\underline{l}} + O\overset{\tilde{\underline{k}}}{\underline{\ell}} \frac{1}{\underline{0}} \dot{\underline{\ell}} \\ + S_{L}/\overset{\dot{\underline{\ell}}}{\underline{e}} \dot{\underline{l}} \overset{\tilde{\underline{l}}}{\underline{l}} + S_{T}/\overset{\dot{\underline{\ell}}}{\underline{e}} \dot{\underline{l}} \sqrt{1 - e^{2}}\cos(f - f_{S})F_{LT}^{\cos(f - f_{S})}\dot{\underline{l}} + O\overset{\tilde{\underline{k}}}{\underline{\ell}} \frac{1}{\underline{0}} \dot{\underline{l}} \\ + S_{L}/\overset{\dot{\underline{\ell}}}{\underline{e}} \dot{\underline{l}} \overset{\tilde{\underline{l}}}{\underline{l}} + S_{T}/\overset{\dot{\underline{\ell}}}{\underline{e}} \dot{\underline{l}} \sqrt{1 - e^{2}}\cos(f - f_{S})F_{LT}^{\cos(f - f_{S})}\dot{\underline{l}} + O\overset{\tilde{\underline{k}}}{\underline{\ell}} \frac{1}{\underline{0}} \dot{\underline{l}} \\ \\ + S_{L}/\overset{\tilde{\underline{l}}}{\underline{e}} \dot{\underline{l}} \overset{\tilde{\underline{l}}}{\underline{l}} + S_{T}/\overset{\tilde{\underline{l}}}{\underline{e}} \dot{\underline{l}} \sqrt{1 - e^{2}}\cos(f - f_{S})F_{LT}^{\cos(f - f_{S})}\dot{\underline{l}} + O\overset{\tilde{\underline{l}}}{\underline{\ell}} \overset{\tilde{\underline{l}}}{\underline{l}} \dot{\underline{l}} \\ \\ \\ \end{array}$$

TMD Factorization:

Holds for $p_T \ll Q$

--> Proper domain of phenomenological fits ?

Not trivial gauge invariance

--> Sign change from SIDIS to DY $(f_{11}^{\downarrow}, h_{1L}^{\downarrow})$

Peculiar Q² evolution (DGLAP)

--> Non-perturbative inputs from data

$f(x,k_T)$

Parton Number Density

Unpolarized TMDs

Spin-Orbit Effect

Spin-Orbit Effect: Sivers

Contalbrigo M.

Spin-Orbit Effect: Collins

Parton Polarization

Transversity and Tensor Charge

TMD Parton Correlators

Beauty and complexity of the unique strong-interacting world

TMD Baseline

Energy range matching perturbative and non-perturbative regimes

$$k = (E, \vec{k}), k' = (E', \vec{k}')$$

$$\theta, \phi$$

$$P \stackrel{\text{lab}}{=} (M, 0)$$

$$q = k - k'$$

$$Q^2 \equiv -q^2 \stackrel{\text{lab}}{=} 4EE' \sin^2 \frac{\theta}{2}$$

$$\nu \equiv \frac{P \cdot q}{M} \stackrel{\text{lab}}{=} E - E'$$

$$x = \frac{Q^2}{2P \cdot q} = \frac{Q^2}{2M\nu}$$

$$y \equiv \frac{P \cdot q}{P \cdot k} \stackrel{\text{lab}}{=} \frac{\nu}{E}$$

$$W^2 = (P + q)^2 = M^2 + 2M\nu - Q^2$$

$$p = (E_h, \vec{p})$$

$$z = \frac{P \cdot p}{P \cdot q} \stackrel{\text{lab}}{=} \frac{E_h}{\nu}$$

$$x_F = \frac{p_{CM}^{\parallel}}{|\vec{q}|} \stackrel{\text{lab}}{\simeq} \frac{2p_{CM}^{\parallel}}{W}$$

4-momenta of the initial and final-state leptons Polar and azimuthal angle of the scattered lepton 4-momentum of the initial target nucleon 4-momentum of the virtual photon Negative squared 4-momentum transfer Energy of the virtual photon Bjorken scaling variable Fractional energy of the virtual photon Squared invariant mass of the photon-nucleon system 4-momentum of a hadron in the final state Fractional energy of the observed final-state hadron Longitudinal momentum fraction of the hadron

Contalbrigo M.

Electron Kinematic Range

Proper Fragmentation Range

How to ensure we are not in target fragmentation ?

When the exclusive is no more part of the semi-inclusive ?

Multi-D Investigation

Achieve the maximum phase space coverage with:

Signal Validation Tests

Multi-D Investigation

Achieve the maximum phase space coverage with:

Analyzing Power

Analyzing power matters Goes like y $A_{LL} \not \mid \frac{\sqrt{1 - e^2} F_{LL}}{F_{UU,T} + eF_{UU,L}}$

Nuclear effects from real (⁶LiD, NH₃, ³He) targets

$$A_{LL} = \frac{1}{f P_T P_B} \frac{N^+ - N^-}{N^+ + N^-}$$

Multi-D Investigation

Achieve the maximum phase space coverage with:

Smearing Effect

What about event migration ?

- define bins larger than resolution

but keep in mind non-linearities!!!

$$\frac{dx}{x} \vdash \frac{1}{y} \frac{dp}{p}$$

 radiative effects change the kinematics (larger y) and introduce a x-talk between modulations

a full knowledge of the hadronic tensor is in principle required

- unfold smearing and radiative effects introduce a statistical correlation

Multi-D Investigation

Achieve the maximum phase space coverage with:

Multi-D Investigation

Do we have enough (ϕ, ϕ_s) coverage in each bin ?

Unbinned Maximum likelihood possible for spin-asymmetries

Next-Gen DIS Facilities: JLab

Jefferson Laboratory (JLab) Continuous Electron Beam Accelerator Facility

- 12 GeV energy
- 90 µA Beam Current
- 85 % Polarization
- 4 experimental Halls (A-D)

CLAS12 @ JLab

CLAS12 wide coverage, excellent PID, various polarized targets, high luminosity

Year	Period	Run	Target	Polarization	Beam	
2018	Spring-Fall	RGA	Proton	-	10.6	GeV
	Fall	RGK	Proton	-	6.5-7.5	GeV
2019	Spring	RGA	Proton	-	10.6	GeV
2019	Spring-Fall	RGB	Deuteron	-	10.6	GeV
2020	Spring-Fall	RGF	Deuteron	-	10.6	GeV
2021	Fall	RGM	Nuclear	-	Several	GeV
2022	Spring-Fall	RGC	NH ₃ -ND ₃	Longitudinal	10.6	GeV
> 2022		RGH	NH ₃ -ND ₃	Transverse	10.6	GeV
> 2022			³ He	Longitudinal	10.6	GeV
> 2022		RGG	⁷ LiD, ⁶ LiH	Longiudinal	10.6	GeV

Luminosity upgrade Stage-1: $2x10^{35}$ cm⁻²s⁻¹ 3 years Stage-2: > 10^{37} cm⁻²s⁻¹ 7-10 years

3.5 4.0 4.5 5.0

2.5 3.0 p (GeV)

Contalbrigo M.

0.85

1.0 1.5 2.0

Momentum (GeV/c)

Upcoming @ JLab

SBS: Spectrometer Pair

Hall-A:

High-luminosity 10³⁸ cm⁻²s⁻¹

³He targets

Wide coverage

SOLID: Large Acceptance Detector

+ precision higher-twist and low pT physics in Hall-C

Beam Spin Asymmetry @ CLAS12

CLAS12 proton data (RGA) S. Diehl et al., e-Print: 2101.03544

$$F_{LU}^{\sin\phi} = \frac{2M}{Q} \mathcal{C} \left[-\frac{\hat{h} \cdot k_T}{M_h} \left(x_B e H_1^{\perp} + \frac{M_h}{M} f_1 \frac{\tilde{G}^{\perp}}{z} \right) + \frac{\hat{h} \cdot P_T}{M} \left(x_B g^{\perp} D_1 + \frac{M_h}{M} h_1^{\perp} \frac{\tilde{E}}{z} \right) \right]$$
86.9±2.6%

Multiplicities @ CLAS12

Transverse momentum dependence and phase space

GGI School FNHP, 28th February 2025

JLab Future

Extend the reach in Q^2 and p_T to exploit an unique facility at the intensity frontier

Energy increase to 20++ GeV

SOLID and CLAS12+

Positron source

DIS Facilities: BNL

Brookhaven National Laboratory (BNL) Electron-Ion Collider

Hadron Beam 41-275 GeV

Electron Beam 5-18 GeV

Polarized Electron and Light Ions

2 Interaction Points (IP6, IP8)

Electron-Ion Collider

Contalbrigo M.

TMDs @ High Energy

Kinematic Prefactor

SIDIS Cross-Section

TMD Evolution Evolution kernel (with CS non-perturbative kernel)

The Q² Game

Wide leverage (at given x) to:isolate higher-twists (1/Q suppressed terms)probe Q2 evolutiondisentangle x dependence

Keep Q² moderate to:

avoid perturbative dilution

TMDs Description

The sensitivity on the relevant parameters changes with center of mass energy

TMD Evolution

The missing non-perturbative universal piece can be extracted from data

With b as Fourier conjugate of P_T/z

$$F_{UT}^{\sin(\phi_h - \phi_S)} = \sum_{q} e_q^2 |C_V(Q)|^2 \int \frac{d^2b}{(2\pi)^2} e^{i(b \cdot P_T)/z} R(Q, b, \mu_0) f_{1T}^{\perp q}(x, b; \mu_0) D_1^q(z, b; \mu_0)$$

Collins-Soper non-perturbative evolution kernel

Complementarity in Q² and b coverage

Contalbrigo M.

Conclusions

The last decade provided many evidences that correlation of partonic transverse degrees of freedom in the nucleon do exist and manifest in hadronic interactions

Next step: Moving from phenomenology to rigorous treatment (predictive power)

New data coming from JLab++ at high-luminosity and EIC at high-energy should allow to:

- Constrain models in the valence and sea region
- Test factorization, universality and evolution
- Study higher twist effects
- Investigate non-perturbative to perturbative transition (along P_T)
- Flavor separation via proton and deuteron targets and hadron ID
- Test of Lattice QCD calculations

A comprehensive study provides access to the peculiar dynamics of the QCD confined world