EXPERIMENTAL RESULTS IN SIDIS ON SPIN-DEPENDENT FLAVOR STRUCTURE OF THE LIGHT QUARK SEA

Contalbrigo Marco INFN Ferrara

Structure of Nucleons and Nuclei June 10, 2013 Como

The Spin Degree of Freedom

In our exploration of the QCD micro-world

Fundamental: do not neglect spin !!

Two questions in Hadronic Physics await explanation since too long

Proton Spin Budget

Single Spin Asymmetries

Quantum phase-space distributions of quarks

 $W_{p}^{q}(x,k_{T},r)$ "Mother" Wigner distributions

Probability to find a quark q in a nucleon P with a certain polarization in a position r & momentum k f_{u/p¹} x=0.2 0.4 S' 0.2 py (GeV) Se S 0.0 -0.2 -0.4 4.4 -0.4 -0.2 0.0 0.2 0.4 px (GeV) TMD PDFs: $f_{D}^{u}(x,k_{T}),...$ Semi-inclusive measurements Momentum transfer to quark or the second Direct info about momentum distribution May explain SSA & Lam-Tung = 20 GeV PDFs $f_{D}^{u}(x),...$ A_N $p_T < 2 GeV/c^{-1}$ 0.2 0 -0.2 -0.40.2 0.4 0.6 0.8 Xr О

Quantum phase-space distributions of quarks

 $W_{p}^{q}(x,k_{T},r)$ "Mother" Wigner distributions

Leading Twist TMDs

N/q	U	L	Т
U	f₁ ⊙ Number Density		h_1^{\perp} \bullet - \bullet Boer-Mulders
L		g ₁ • • • • • • • • • • • • • • • • • • •	h [⊥] _{1L}
т	f_{IT}^{\perp} • • • • • • • • • • • • • • • • • • •	g _{1T} ๋ - ๋ Worm-gear	$\begin{array}{c} h_1 & \textcircled{s} & - & \textcircled{s} \\ \hline Transversity \\ h_{1T}^{\perp} & \textcircled{s} & - & \textcircled{s} \\ Pretzelosity \end{array}$

quark polarisation

Number density and helicity:

Focusing here in transverse momentum dependence

Transversity:

Survives transverse momentum integration (missing leading-twist collinear piece)

Differs from helicity due to relativistic effects and no mix with gluons in the spin-1/2 nucleon

Leading Twist TMDs

quark polarisation

Number density and helicity:

Focusing here in transverse momentum dependence

Transversity:

Survives transverse momentum integration (missing leading-twist collinear piece)

Differs from helicity due to relativistic effects and no mix with gluons in the spin-1/2 nucleon

Off-diagonal elements:

Interference between wave functions with different angular momenta: contains information about parton orbital angular motion and spin-orbit effects

Testing QCD at the amplitude level

T-odd elements:

- sign change between DY and SIDIS
 - universality of TMDs

Strict prediction from TMDs + QCD !

Leading Twist TMDs

quark polarisation

Number density and helicity:

Focusing here in transverse momentum dependence

Transversity:

Survives transverse momentum integration (missing leading-twist collinear piece)

Differs from helicity due to relativistic effects and no mix with gluons in the spin-1/2 nucleon

quark polarisation

Off-diagonal elements:

Interference between wave functions with different angular momenta: contains information about parton orbital angular motion and spin-orbit effects

Testing QCD at the amplitude level

T-odd elements:

- sign change between DY and SIDIS
 - universality of TMDs

Strict prediction from TMDs + QCD !

The SIDIS case

$$\frac{d^{6}\sigma}{dx \, dy \, dz \, d\phi_{S}d\phi \, dP_{h\perp}^{2}} \overset{Leading}{\propto} S_{T} \left\{ \sin(\phi - \phi_{S}) F_{UT,T}^{\sin(\phi - \phi_{S})} \right\}$$
$$+ S_{T} \left\{ \varepsilon \sin(\phi + \phi_{S}) F_{UT}^{\sin(\phi + \phi_{S})} + \varepsilon \sin(3\phi - \phi_{S}) F_{UT}^{\sin(3\phi - \phi_{S})} \right\}$$
$$+ S_{T} \lambda_{e} \left\{ \sqrt{1 - \varepsilon^{2}} \cos(\phi - \phi_{S}) F_{LT}^{\cos(\phi - \phi_{S})} \right\} + \dots$$

The SIDIS case

The SIDIS Factories

HERMES:

Polarized 27 GeV e+/e-Polarized pure gaseous H&D targets Excellent Particle ID

HALL-A, B, C:

Polarized 6 GeV e-Polarized ³He, NH₃ & HDice targets High- Luminosity

 $\begin{array}{l} \mbox{COMPASS:} \\ \mbox{Polarized 160 GeV } \mu \\ \mbox{Polarized 6LiD & NH_3$ targets} \\ \mbox{High-Energy} \end{array}$

Contalbrigo M.

NUMBER DENSITY

LHC gauge boson production

NNPDF: arXiv:1207.1303

x=6.32E-5

HERA F,

2.5

Fragmentation Functions @ B-factories

0.8

 10^{3}

102

10

The Hadron Multiplicities

LO interpretation:

$$M_N^h = \frac{1}{N_N^{DIS}(Q^2)} \frac{dN_N^h(z,Q^2)}{dz} = \frac{\sum_q e_q^2 \int dx \ f_{1q}(x,Q^2) D_{1q}^h(z,Q^2)}{\sum_q e_q^2 \int dx \ f_{1q}(x,Q^2)}$$

SIDIS data constrain fragmentation at low c.m. energy and bring enhanced flavor sensitivity

Proton-deuteron asymmetry:

$$A_{d-p}^{h} = \frac{M_d^h - M_p^h}{M_d^h + M_p^h}$$

Reflects different flavor content Correlated systematics cancels

Flavor Structure of the Nucleon Sea, 1st July 2013, ECT*

 $f_1 \cdot D_1$

The P_{h_1} -unintegrated multiplicities $(f_1 \otimes D_1)$

arXiv: 1305.7317

COMPASS 2004 LiD (part)

Preliminary

Disentanglement of z and $P_{h I}$: access to the transverse intrinsic quark k_{T} and fragmentation p_{T}

i.e. from gaussian anstaz

Flavor Structure of the Nucleon Sea, 1st July 2013, ECT'

0.2

arXiv: 0709.3020

0.2

0.20<z<0.25</p>

0.25<z<0.30

0.30<z<0.35

0.35<z<0.40

0.40<z<0.50 0.50<z<0.60

₽ 0.60<z<0.70 0.70<z<0.80

′ P_{h1} (GeV/c)²

0.8

 π^{\star} from H

^{╭╋╋}╋╋╋╋╋╋╋

0.1

 π^+ from D

0.1

 $P_{h1}^{2}(GeV^{2})$

Parton Polarization

HELICITY

Parton Helicity from Inclusive DIS

HERA F,

Parton Helicity from Inclusive DIS

Parton Helicity from Inclusive DIS

Contalbrigo M.

$$A_{1}^{h}(x,z) = \frac{\sum_{q} e_{q}^{2} \Delta q(x) \int D_{q}^{h}(z) dz}{\sum_{q'} e_{q'}^{2} q'(x) \int D_{q'}^{h}(z) dz} = \sum_{q} P_{q}^{h}(x,z) \frac{\Delta q(x)}{q(x)}$$

The SIDIS Flavor Probes

Contalbrigo M.

Flavor Structure of the Nucleon Sea, 1st July 2013, ECT*

Contalbrigo M.

Flavor Structure of the Nucleon Sea, 1st July 2013, ECT*

Sea Parton Helicity from RHIC

Sea Parton Helicity from RHIC

Seidl talk

Gluon Parton Helicity from RHIC

Contalbrigo M.

Strange Helicity from SIDIS

Contalbrigo M.

From Lattice

From Lattice

Contalbrigo M.

Flavor Structure of the Nucleon Sea, 1st July 2013, ECT³

Parton Helicity Landscape

Х

10 -1

Point Transverse

Contalbrigo M.

TRANSVERSITY

(THE COLLINEAR MISSING PIECE)

First evidences

 $\sigma_{UT}^{\sin(\phi+\phi_S)}$ $\propto h_1 \otimes H_1^{\perp}$

SIDIS: ep**→**e'hX

 $\sigma_{UT}^{\sin(\phi-\phi_S)} \propto f_{1T}^{\perp} \otimes D_1$

2005: First evidence from HERMES measuring SIDIS on proton

A. Airapetian et al, Phys. Rev. Lett. 94 (2005) 012002

Non-zero transversity !! Non-zero Collins function !!

Non-zero Sivers function !!

Fragmentation @ e+e- Colliders

Contalbrigo M.

Flavor Structure of the Nucleon Sea, 1st July 2013, ECT*

 $H_1^{\perp} \otimes H_1^{\perp}$

The Collins SIDIS amplitude

Contalbrigo M.

Flavor Structure of the Nucleon Sea, 1st July 2013, ECT*

 $h_1 \otimes H_1^\perp$

The Collins Amplitude

K⁺ signal larger than π⁺? role of sea quarks k_T dependence in FFs higher twists effects

Peculiar K⁻ ?

no valence quark in common with proton

 $h_1 \otimes H_1^\perp$

Two hadron asymmetries

Contalbrigo M.

Flavor Structure of the Nucleon Sea, 1st July 2013, ECT*

 $h_1 \otimes H_1^{\triangleleft}$

Transversity Signals

Contalbrigo M.

Transversity vs Helicity

• $\delta d = -0.25^{+0.30}_{-0.10}$

[arXiv:1303.3822]

 $h_1 \otimes H_1^\perp$

[arXiv:1303.3822]

Transversity @ JLab12 2014 +

Contalbrigo M.

Flavor Structure of the Nucleon Sea, 1st July 2013, ECT*

х

0.6

Cone Cut

-0.2

↔ 0.3

+ 0.4

1

1.1

Quark

AS12 bjected

IERMES

-CCQM

Turin fit

cQSM

∆Bag

0.5

 $M_{Inv}^{\pi^*\pi^*}$ [GeV/c²]

1.2

Spin-Orbit Effects

(THE TMD CHALLENGE)

The Sivers Signals

Contalbrigo M.

Flavor Structure of the Nucleon Sea, 1st July 2013, ECT*

The Sivers Signals

K+ amplitudes larger than π +:

Deuteron signal compatible with zero or slightly negative:

Contalbrigo M.

Flavor Structure of the Nucleon Sea, 1st July 2013, ECT*

The Sivers Distributions

Without sea:

With sea:

The Sivers Challenge

From SIDIS to Drell-Yan:

Sign change as a crucial test of TMDs factorization

The Sivers Challenge

Contalbrigo M.

Flavor Structure of the Nucleon Sea, 1st July 2013, ECT³

OAM Glimpses

Sivers Landscape

CAHN & BOER-MULDERS

Naïve-T-odd Chirally-odd Spin effect in unpolarized reactions

(THE NEGLECTED EFFECTS)

The Azimuthal Modulation

Contalbrigo M.

Flavor Structure of the Nucleon Sea, 1st July 2013, ECT*

 $h_1^{\perp} \otimes H_1^{\perp}$

Unpolarized Cross-section

Unpolarized Cross-section

The SIDIS cos2¢ p_T dependence

$$\sigma_{UU}^{\cos(2\phi)} \propto h_1^{\perp} \otimes H_1^{\perp} + \left[f_1 \otimes D_1 + \ldots\right] / Q^2$$

Can be explained by large uncertainty on Cahn and neglected HT effects ?

 $h_1^{\perp} \otimes H_1^{\perp}$

Difference in pion charge

The SIDIS cos2¢ dependence

COMPASS⁶LiD (25% of 2004 data)

Multidimensional analysis is mandatory: x trend changes from small z to large z values

Contalbrigo M.

Flavor Structure of the Nucleon Sea, 1st July 2013, ECT*

 $h_1^{\perp} \otimes H_1^{\perp}$

The SIDIS Landscape 2014+

Contalbrigo M.

Flavor Structure of the Nucleon Sea, 1st July 2013, ECT*

The Drell-Yan Landscape 2014+

The SIDIS Landscape

[e-p] 7

Multidimensional analysis

Flavor separation: various hadron types and different targets

TMD formalism: di-hadron vs single-hadron h_1 extraction, inclusive SSA measurements

Scale dependence & Higher twists

Contalbrigo M.

[µ-p] 1

Compass

Flavor Structure of the Nucleon Sea, 1st July 2013, ECT*

Jefferson Lab

e-p] 5 Hall-A,B,C

A World-wide Challenge

