3D NUCLEON STUDIES TOWARDS EIC (AN ITALIAN VIEW)

Contalbrigo Marco INFN Ferrara

Workshop on Physics and Engineering Opportunities at EIC 2016 October 14, 2016 - Ross Priory on Loch Lomond,

The General Equations and Dynamics

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$$
$$\nabla \cdot \mathbf{B} = 0$$
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

But star dynamics ?

But superconductivity ?

The Strong-Force Confined-Universe

$$\mathcal{L} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + \sum_{q=u,d,s,c,b,t} \bar{q} \left[i\gamma^{\mu} (\partial_{\mu} - igA_{\mu}) - m_q \right] q$$

Dynamic Spin

- Parton polarization

1

- Orbital motion
- Form Factors
- Magnetic Moment

Hadronization

- Spin-orbit effects
- Parton energy loss
- Jet quenching

- MPI

Color charge density

- Nucleon tomography
- Diffractive physics
- Gluon saturation
- Color force

The QCD View

Non Perturbative Physics

Contalbrigo M.

The 3D Nucleon Structure

The Spin Degree of Freedom

In our exploration of the QCD micro-world

Fundamental: do not neglect spin !!

Two questions in Hadronic Physics await explanation since too long

A World-wide Challenge

The SIDIS Landscape

Moving Out of Collinearity

Rich and Involved phenomenology !!

SIDIS Cross-Section & TMDs

$$\frac{d^{6}\sigma}{dxdQ^{2}dzdP_{h}d\phi d\phi_{s}} \propto \left[F_{UU} + \varepsilon \cos(2\phi)F_{UU}^{\cos(2\phi)}\right] + S_{L}\left[\varepsilon \sin(2\phi)F_{UL}^{\sin(2\phi)}\right] \\ + S_{T}\left[\sin(\phi - \phi_{s})F_{UT}^{\sin(\phi - \phi_{s})} + \varepsilon \sin(\phi + \phi_{s})F_{UT}^{\sin(\phi + \phi_{s})} + \varepsilon \sin(3\phi - \phi_{s})F_{UT}^{\sin(3\phi - \phi_{s})}\right] \\ + S_{L}\lambda_{e}\left[\sqrt{1 - \varepsilon^{2}}F_{LL}\right] + S_{T}\lambda_{e}\left[\sqrt{1 - \varepsilon^{2}}\cos(\phi - \phi_{s})F_{LT}^{\cos(\phi - \phi_{s})}\right] + O\left(\frac{1}{Q}\right)$$
Quark fragmentation
$$TMD \text{ Factorization} \\ holds \text{ for } p_{T} < Q \\ Quark parton distribution$$

Wide kinematic coverage is needed to resolve the convolution

$$F_{UU} = f \otimes D = x \sum_{q} e_{q}^{2} \int d^{2} p_{T} d^{2} k_{T} \ \delta^{(2)}(\mathbf{P}_{h\perp} - z\mathbf{k}_{T} - \mathbf{p}_{T}) \ w(\mathbf{k}_{T}, \mathbf{p}_{T}) \ f^{q}(x, k_{T}^{2}) \ D^{q}(z, p_{T}^{2})$$

The Multi-D Approach

Umpolarized Multiplicities

Disentangle all the kinematic dependences

Asymmetries so far used to suppress systematics effects

$$A_{LL} = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-}$$

$$A_{LL} = \frac{1}{fP_T P_B} \frac{N^+ - N^-}{N^+ + N^-}$$

They suppress also physics (i.e. evolution)

Multi-D:

- naturally reduces some source of systematics
- blows up the statistical error also due to smearing and acceptance

Requires high-luminosity

First evidences

 $\sigma_{UT}^{\sin(\phi+\phi_S)}$ $\propto h_1 \otimes H_1^{\perp}$

SIDIS: ep**→**e'hX

 $\sigma_{UT}^{\sin(\phi-\phi_S)} \propto f_{1T}^{\perp} \otimes D_1$

2005: First evidence from HERMES measuring SIDIS on proton

A. Airapetian et al, Phys. Rev. Lett. 94 (2005) 012002

Non-zero transversity !! Non-zero Collins function !!

Non-zero Sivers function !!

Parton Number Density

Contalbrigo M.

Transverse Momentum Dependent Distr.

Related to:

- Low-pT regime: precise xsec measurements
- Parton correlations: short range, MPI
- Low-x physics: color glass condensate
- Hadronization: parton dynamic in medium

Unpolarized TMDs

Large tiles extending up to the inverse of the gauge field fluctuation scale $\rho << M$

May short range parton correlations manifest also in pp MPI ?

Reflect different fragmentation

May be enhanced in medium.

Parton propagation in cold matter as complementary study to QGP

The P_{hī}-unintegrated multiplicities

 $\sigma_{IIII} \propto f_1 (k_T \ldots) \otimes D_1 (p_T \ldots)$

Disentanglement of z and P_{hL} : access to the transverse intrinsic quark k_T and fragmentation p_T .

i.e. from gaussian anstaz:

 $\left\langle P_{h\perp}^2 \right\rangle = z^2 \left\langle k_T^2 \right\rangle + \left\langle p_T^2 \right\rangle$

Contalbrigo M.

TMD Evolution

Medium modification

In terms of the QCD, there are several contributions to P_T distribution of hadrons produced in SIDIS:

- primordial transverse momentum + gluon radiation of the struck quark
- the formation and soft multiple interactions of the "pre-hadron"
- · the interaction of the formed hadrons with the surrounding hadronic medium

HERMES [arXiv: 0906.2478]

A. Accardi et al. [arXiv 1212.1701]

Medium modification

Contalbrigo M.

Opportunities @ EIC 2016, 14th October 2016, Loch Lomond

20

Low-x Physics

Interplay of the data cut at low Q^2 and impact on gluon at low x

QCD Phase Diagram

$x \log, Q^2$ not too high:

- partonic k_T may become important!
 - are (perturbative) parton showers enough to describe this?
 - or does one need something more?
 k_T-dependent parton densities?

BFKL must be the correct theory of low-x QCD

It naturally incorporates k_T -unintegrated PDFs

Mechelen at DIS2014: no clear evidence of BFKL in experimental data

Gluon TMDs

Starting distribution for gluons at q_0

$$x \mathcal{A}_0(x, k_\perp) = N x^{-B} \cdot (1-x)^C \left(1 - Dx + E\sqrt{x}\right) \exp[-k_t^2/\sigma_\perp^2]$$

CCFM (BFKL like) evolution + Herafitter package

Opportunities @ EIC 2016, 14th October 2016, Loch Lomond

 $\sigma^2 = q_0^2 / 2$

Spin-Orbit Effects

Transverse Momentum Dependent Distr.

quark polarisation

_	N/q	U	L	Т
ו polarisatior	U	$f_{\scriptscriptstyle I}$		$\boldsymbol{h}_{I}^{\perp}$
	L		g_1	$\boldsymbol{h}_{1L}^{\perp}$
nucleor	т	$f_{ m 1T}^{\perp}$	g_{1T}^{\perp}	$h, h_{ m 1T}^{\perp}$

Transversity:

different from helicity distribution as rotation and boost do not commute

- sensitive to the relativistic effects
- related to the tensor charge
- non-singlet type evolution
- chirally-odd

it requires a chirally-odd fragmentation

Related to:

- Tensor Charge & Coupling
- SSA in hadron interactins

Collins function:

a spin- p_T correlator in fragmentation

$$D_{q/h}(z, \vec{p}_{\perp}, \vec{s}_q) = D_{q/h}(z, p_{\perp}^2)$$

+
$$\frac{1}{zM_h} H_1^{\perp q}(z, p_{\perp}^2) \vec{s}_q \cdot (\hat{k} \times \vec{p}_{\perp})$$

Transversity & Collins Evidences

Transversity & Tensor Charge

Distributions:

Charges:

$$\delta q ~\equiv~ \int_0^1 dx \left[\Delta_T q(x) - \Delta_T ar q(x)
ight]$$

[arXiv:0804.1815]

[arXiv:1309.2499]

Bychkov++

B. Pattie++

Α.

Transverse Momentum Dependent Distr.

quark polarisation

n polarisation	N/q	U	L	Т
	U	$f_{\scriptscriptstyle I}$		$\boldsymbol{h}_{I}^{\perp}$
	L		g_1	$\boldsymbol{h}_{IL}^{\perp}$
nucleor	т	$f_{1\mathrm{T}}^{\perp}$	g_{1T}^{\perp}	$h, h_{ m 1T}^{\perp}$

Off-diagonal elements:

Interference between wave functions with different angular momenta: testing QCD at the amplitude level

T-odd elements:

 Sign change between DY and SIDIS Generalized universality of TMDs

Related to:

- ✓ SSA in adronic interactions
- ✓ Parton Orbital motion
- Anomalous Magnetic Moment

Opportunities @ EIC 2016, 14th October 2016, Loch Lomond

27

Sivers Correlations

$$\begin{split} f_{q/h^{\uparrow}}(x,\vec{k}_{\perp},\vec{S}) &= f_{q/h}(x,k_{\perp}^2) - \frac{1}{M} f_{1T}^{\perp q}(x,k_{\perp}^2) \vec{S} \cdot (\hat{P} \times \vec{k}_{\perp}) \\ \text{Spin independent} & \text{Spin dependent} \end{split}$$

Sivers Signals

$$\sigma_{UT}^{\sin(\phi-\phi_S)} \propto f_{1T}^{\perp} \otimes D_1$$

Sivers from polarized SIDIS

$$gT_{q,F}(x,x) = -\int d^2k_{\perp} \frac{|k_{\perp}|^2}{M} f_{1T}^{\perp q}(x,k_{\perp}^2)|_{\text{SIDIS}}$$

May generate the misterious hadronic SSA

Contalbrigo M.

The Sivers Function

Contalbrigo M.

Sivers in the Sea ?

PGF @ COMPASS: gluon Sivers from deuterium and proton targets

Sivers Sign Change

Solid line: assumption of sign change for Sivers Dashed line: assumption of no sign change for Sivers KQ prediction (unevolved) EIKV prediction (largest predicted evolution effect)

Kang and Qiu, [PRL 103 (2009) 172001] Echevarria++, [PRD 89 (2014) 074013]

Parton 3D Dynamic

GPD E:

Imbalance in the probed parton spatial distribution

$$q_X(x,{f b}_\perp)\,=q(x,{f b}_\perp)-rac{1}{2M}rac{\partial}{\partial b_y}{\cal E}_q(x,{f b}_\perp)$$

Sivers TMDs:

Imbalance in the observed hadron momentum distribution

Spin Budget from Lattice

Parton Helicity @ EIC

Proton Spin Decomposition:

$$\frac{1}{2} = \frac{1}{2} \sum_{f} (q_{f}^{+} - q_{f}^{-}) + L_{q} + \Delta G + L_{g}$$

EIC measurement at high-Q² and low-x \rightarrow Precise helicity flavor decomposition

Contalbrigo M.

Opportunities @ EIC 2016, 14th October 2016, Loch Lomond

GPDs from FFs

Contalbrigo M.

Nucleon Multi-D Mapping

Transverse Momentum (TMDs)

Impact parameter (GPDs)

Contalbrigo M.

Opportunities @ EIC 2016, 14th October 2016, Loch Lomond

6

0.01

EIC User Group

Wednesday, July 7, 16

Contalbrigo M.

State of EIC @ EICUG ANL

EICUG Today: 651 Users, 142 Institutes, 27 Countries 350 experimentalists, 111 theorists, 141 accelerator-physicists, 43 unknowns

Abhay Deshpande

6

EIC Detector

The JLab central detector concept includes a DIRC, a dual-radiator and a modular aerogel RICH detectors and a 4π TOF for the PID. Three models of the EIC detector are under study at JLab and BNL, with slightly different layouts of the hadron identification. The PID consortium aims to develop an integrated solution useful for both BNL and Jlab.

10 GeV e and 100 GeV p is a common JLab/BNL setting Maximum momentum coverage is Important for physics (i.e. SIDIS) **e-endcap**: aerogel RICH with TOF (or dE/dx) for lower momenta

h-endcap: combined gas and aerogel RICH to cover the full range with TOF

Dual-Radiator RICH

4 cm aerogel (n=1.02) & 160 cm C_2F_6 (or CF_4) gas

- Focusing mirror configuration (focal -plane away from the beam, reduced area and background)
- RICH is in magnetic field (3T in the simulation)

Discrimination power for particle types

mirror R = 2.8 m

Photo-detector: spherical shape, 8500 cm² (per sector), pixel size 3 mm

6 sectors of 60° in azimuthal angle

Reconstruction by Inverse Ray Tracing algorithm. Improved clarity of aerogel and n = 1.02 allow pi/K separation up to 13 GeV/c at 3 sigma

Geant4 (GEMC) simulation

Modular RICH

Contalbrigo M.

Thick GEM

Contalbrigo M.

3D Phenomenology

HOME

TEAM

A. Bacchetta ERC Consolidator Grant

AND QCD

HADRONICS STRUCTURE

Has QCD

devoted to the study of the properties of transverse momentum distributions and their extraction from experimental data

3D SPIN

http://www.hadronicphysics.it/hasqcd/index.php/3d-spin/

WORKS

NEWS

CONTACTS

Home / 3d Spin

Contalbrigo M.

EIC Case Discussions in Italy

Terzo incontro Nazionale di Fisica Nucleare INFN2106 LNF, 14-16 November 2016 https://agenda.infn.it/conferenceDisplay.py?ovw=True&confld=10586

http://www.lnf.infn.it/conference/2016/3DPDF/

Opportunities at EIC Workshop (winter time)

EIC User Group Meeting 18/07 – 22/07 2017, Trieste

Contalbrigo M.

The Next QCD Frontier

Understanding the glue that binds us all 3D nucleon: an endeavor on NPQCD dynamics with many connections with other QCD topics

> EIC is a unique opportunity for a comprehensive study and possible breakthroughs

A strong effort is ongoing to make it a reality by a motivated and experienced community all over the world

This projects deserve the strongest support as we may all benefit !!

EIC case discussion @ NPQCD Cortona, 20-22 April 2015

Another round likely to happen soon

Contalbrigo M.