RICH detector settings, calibration, performance – status and plan M. Contalbrigo – INFN Ferrara

CLAS12 First Experiment Workshop JLab, 6-10 June 2018.

M. Contalbrigo, M. Mirazita, V. Kubarovsky, M. Turisini, I. Balossino, A. Kim, G. Angelini, and the rest of RICH group

RICH Readout

- 391 MultiAnode PMTs grouped in 138 tiles (x2 or x3)
- One FPGA board configures and reads out each tile
- One MAROC chip per MAPMT
- Binary readout on 25024 independent channels (no ADC)

Fast shaper and preamplifier on each channel - Non-linear behavior already at fraction of p.e., optimal for 0/1 response

RICH TDC Readout

HIT reconstruction

- The FE electronics provides for each pixel the list of times at which the signal crossed the threshold
- each time is marked as leading or trailing edge
- a reconstructed hit is made by a leading edge (T1) followed by a trailing edge (T2)
- T1 provides the time resolution, T2-T1 the duration of the hit, which is proportional to the charge
 Cross-talk
 Dark Counts

RICH Commissioning and Calibration

1) Data Acquisition

- FE gain, one per channel: 25024 parameters
- FE threshold, one per MAPMT: 391 parameters
- 2) Event reconstruction
 - channel-to-channel time offsets: 25024 parameters
 - time walk correction: 391 functions
- Stability monitoring tools
 - Pedestal runs
 - Dark runs
 - LED runs
 - physics data

- -> baseline, dead channels
- -> hot pixels
- -> time offsets, time-walk correction

Pedestal RMS Distribution

Contalbrigo M.

Pedestals Stability

Pedestal vs Threshold

Slot 3 Fiber 0 Asic 0 Channel 58 PMT 4 Pixel 54

RICH Timing

Readout time window well defined (during engineering run)

RICH Hit Classification

Single Photo-Electron Hits

Hit digitalization and cluster reconstruction released and added to coatjava

Contalbrigo M.

RICH Working Range

Relative efficiency as a function of the working parameter

Calibration and Monitoring Tools

Results from the MAPMT characterization tests with a laser have been used to select best working point

dN/ds p.d.f. (arb. units)

- HV 1000 Volt
- Threshold +25
- Gain equalized

Special test runs have been taken

TEST1: 1/30/2018

- MAROC gains calculated to equalize the average SPE charge
- three sets of thresholds (low, intermediate, high)

TEST2: 2/14/2018

- MAROC gains and thresholds set to equalize the cross-talk contamination and the average SPE charge
- Various sets tested, different HV values

Gain Setting Test1

Before equalization: all gains set to 1 After equalization: average gain close to 1, values between about 0.5 and 2.5

MAPMT close to the beam line:
 Higher MAPMT gain -> MAROC gain below 1
 MAPMT at larger angle:
 Lower MAPMT gain -> MAROC gain above 1

Gain Setting Test1

Duration distributions, all the channels and PMTs

black: high threshold

red: intermediate threshold

green: low threshold

Before equalization

After equalization

After equalization the distributions are less sensitive to the threshold

Higher thresholds cut the tail of short signals

Efficiency Study

Three MAPMTs with no gain change have been used to normalize the counts

Normalized counts have been compared with different running conditions

Gain Equalization

Test done at high threshold

Forward MAPMT Equalization gain below 1 but no change in the efficiency

Large angle MAPMT Equalization gain between 1.5 and 2 but less than 15% increase in the efficiency

count ratio

equalization gain

Time Calibration

Time offsets from real data LED system Time walk from laser stand LED system

Dead Channels

TDC Entries

DAQ Troubleshooting

It occurred few times during the configuration of the run that the RICH readout was not correctly set up

- 1) The optical link with one FPGA is lost
 - Data taking may or may not start regularly. An alarm was generated
 - The problem has been solved (hopefully) by making the FPGA discovery process more robust
- 2) A MAROC chip is not recognized by the FPGA
 - The connection with the FPGA is ok, but the tile is not taking/sending data
 - A fix has been implemented,

The origin of the problem is not clear yet, it might be due to a firmware bug or to radiation damage.

Usually a LV power cycle solve the problem.

Conclusions

- The RICH is taking data since the beginning of RGA with equalized gains and low thresholds, HV=1000 V
 - 5 dead channels
 - 7 hot pixels

Next steps

- 1) Refine the efficiency studies: individual channel time cuts, background subtraction, etc.
- 2) Analyze the data from TEST2: in progress
- 3) Perform the time calibration on each channel
- 4) Implement correlations with other detectors

Monitoring/calibration

We plan to take regular calibration and monitoring runs (~once per week)

- pedestal and dark runs are fast
- LED runs might take few hours