THE CLAS12 RICH PROJECT

Meeting with Hamamatsu, LNF - 31 May 2013

THE JLAB12 FACILITY

Jlab Site @ Newport News, VA USA

- Nuclear and nucleon structure study by eletron probe
- (Exotic) Meson/Barion spectroscopy
- from strong to perturbative QCD

12 GeV Upgrade Project

12 GeV Project Status

3rd C100 cryomodule being transferred

Hall D Interior

- Project 75% Complete, 88% Obligated
 - Civil (92%) ; Accelerator (88%) ; Physics Equip (~60%)
- We expect to be running beam to Hall A in February 2014 and Hall D later in the year
- Large user involvement in 12-GeV detector construction
- 7+ years approved, Halls have prepared initial schedule

12 GeV Cryomodules/Waveguides

THE CLAS12 RICH

CLAS12 in Hall-B

CLAS12 Particle Identification

Aerogel mandatory to separate hadrons in the 3-8 GeV/c momentum range
→ collection of visible Cherenkov light
→ use of PMTs

Challenging project, need to minimize detector area covered with expensive photodetectors

Argonne	National	Lah
AIguille	National	Lav

Duquesne University

Glasgow University

University of Connecticut

UTFSM (Chile)

Mechanical Design

Mechanical Design

Magnetic Field

The Mirror System

The Mirror System

RICH News

Past 6 months:

- July-12: test-beam with electrons (Frascati)
- ✓ July-12: test-beam with hadrons (CERN)
- Dec-12: test-beam with hadrons (CERN)
- ✓ Feb-13: Feb: start engineering phase
- Feb-Jun-13: intensive test-beam data analysis

THE CLAS12 RICH PROTOTYPE

RICH Test Beam: Beam ID

RICH Test Beam: GEM Tracking

Two 10x10 cm² chambers with 256 strips in X and Y planes

RICH Test Beam: Direct Light

Ring Coverage

RING COVERAGE:

Figure 27: Cherenkov photon hit pattern measured with aerogel of different refractive index.

Separation vs Energy

Figure 33: Pion ring radius distributions (blue histograms) compared with those from events with gas Cherenkov signal below threshold (red histograms), for P = 6,7,8 GeV/c beam (from left to right).

P (GeV/c)	R(π) (mm)	σ(π) (mm)	R(K) (mm)	σ(K) (mm)	n(σ)
8	336.18±0.01	1.81±0.01	329.8±0.1	1.71±0.09	3.6
7	335.12±0.02	1.81±0.01	327.0±0.2	2.33±0.22	3.9
6	334.79±0.03	1.81±0.02	323.5±0.21	1.63±0.19	6.6

Background Hits

vertiqal coordinate 0.9 0.8 0.7 100 0.6 0.5 0 0.4 -100 0.3 -200 0.2 0.1 -300 -300 -200 200 300 -1000 100 horizontal coordinate

Event 41

Figure 28: Hit distribution of one event measured with n=1.05 and $t=2~{\rm cm}$ aerogel. The circle show the Cherenkov ring fitted to the hits.

Background rate at the level of 3 x 10⁻⁴ per pixel

About 70 % associated to the aerogel from "empty target" runs

Figure 29: Number of MAPMT hit per event: all hit above threshold (black histogram), background hits (red histogram) and Cherenkov hit (blue histogram). Mean values of the distributions are reported in the legend.

Readout Time-Window

A "empty target" background rate at the level of 1×10^{-4} in a time window of few hundreds ns corresponds to a dark count rate of 0.4 KHz per pixel.

Is it compatible with the expected H8500 dark-count at 1750 V?

Need to correlate data-sheet dark current with dark counts with MAROC3 readout

UV-window MA-PMTs

UV-window H8500 provides ~ 1 p.e. more than normal PMT but at the price of an increased spread in resolution

Standard PMT is the preferred option

Radius sigma (mm)

Figure 36: Gaussian width of Cherenkov ring radius as a function of N_{pe} measured with 14 UVenhanced glass MAPMTs (blue triangles), with 14 normal glass MAPMTs (red squares) or with all the 28 MAPMTs (black circles).

RICH Test Beam: Reflected Light

The Reflected Light Case

Aerogel n=1.05, Beam P = 6 GeV/c

Main goal: Measure Photon Yield Study contributions to the resolution Geometry is not suitable for good n-sigma separation

Contalbrigo M.

Meeting with Hamamatsu, 31st May 2013, JLab

Reflected Light Photon Yield

Russian producer estimates 6 cm of transmission length is feasible in massive production

Contributions to the Resolution

MAROC3-chip Readout Principles

Compact Design (4096 channels in a shoe-box)

Analog (slow) or Digital (fast) readout

After common noise subtraction

DREAM-chip Readout Principles

- Signals are continuously pre-amplified, shaped, sampled at 20-30 MHz and kept in a circular analog memory
 - Deep enough to sustain 16 μs trigger latency
- At each trigger 4 6 corresponding samples are readout and digitized
 - Readout does not disturb sampling
- Retained samples are digitally processed
 - Pedestal equalization online
 - Common noise subtraction online
 - Zero suppression online
 - Measure charge and time off-line

RICH outlook

Next 6 months:

- Feb-Jun: finalize test-beam data analysis
- Mar-Jun: update the CLAS12 RICH project and CDR
- August: pre-review at JLab
- July: test-beam dedicated to electronics
- August: review with DOE
- September: start procurement

RICH Test Beam: SiPM

The SiPM Prototype

The Custom SiPM Matrix@-25°

Average Number of Hits per Event

T	Hits per event	N p.e.
0 = 0		
-25°	0.04	22.6
+25°	0.04	22.6
- 2 5°	0.770	24.2
-25°	0.320	26.8
-25°	0.223	22.4
onclusion: poled SiPM are a valid alternative to H8500		
	-25° -25° -25°	-25° 0.770 -25° 0.320 -25° 0.223