

The vBDX detector

Simulation for background shielding

What's the sensitivity of the experiment?

Sensitivity of the Theta Weinberg, simple single – bin-chi square analysis (From Sierra et al Phys. Rev. D 104, 033004 (2021))

$$\chi^2 = \left(rac{N_{\mathrm{Exp}} - (1+lpha)N_{\mathrm{Theo}}(p)}{\sigma}
ight)^2 + \left(rac{lpha}{\sigma_{lpha}}
ight)^2 \,,$$

 $N_{Exp} = experimental events$ $N_{Theo} = predictions of the underlying hypothesis$ $\sigma = \sqrt{N_{Exp} + B}, \quad B \text{ refers to background}$ $B = N_{Exp} \times f (f = certain fraction of signal)$ $\frac{\alpha}{\sigma_{\alpha}} = sistematic uncertainty, mainly from quenching factor$

- Quenching
 - Difficult to estimate
 - For Coherent experiment was 13%

Background sources

- Neutron from Dump
- Cosmics (neutron and muons)

Define the best geometry configuration and the best definition of the background event to avoid signals that mimic the neutrino interactions

Rejection of background event

Rejection of background event

 Threshold → If in one hits we observe a deposited energy below threshold we defined the hit as "not visible"

$$CsI = 10 \text{ keV}$$

Veto =1000 keV

 Time window → If two or more steps happens within the same TimeWindow, they belong to the same Hit

Neutron coming from dump

Simulated in Fluka **1.4e18 eot** producing neutron Neutron exiting from 3 m lead are **6e12**

the multiplicity of hits in the matrix it is possible to filter the neutron events

- 768 CsI crystals 6x6x32 cm
- 6 cm of plastic scintillator all around (veto)
- 5 cm Pb
- 20 cm H20
- 10 cm concrete

Theta Weinberg Reach

- $\sim 1m^3$ Csl detector
- 1 y data taking
- Background/signal ~ 35
- QF $\sim 13\%$

$$Sin^2\theta_W = 0.2351^{+0.016}_{-0.0143}$$

Theta Weinberg Reach

• $\sin^2 \theta_W = 0.2351^{+0.016}_{-0.0143}$

•The uncertain obtain are mainly influenced by QF as already note in Coherent collaboration analysis

Respect to Coherent, vBDX can achieve a precision that is 4 times better

 $\sin^2 \theta_{W} = 0.209^{+0.072}_{-0.069}$

Comparison with other experiments shows that vBDX can be competitive

Neutron Cosmic rays

Simple geometry CsI crystal 6x6x32 cm

- •1 mm Pb all around the crystal
- 6 cm of plastic scintillator all around (veto)
- •55 cm Pb only on top
- •30 cm concrete all around (room)

Generated neutrons energy Range	Total hit not removable expected in a day (5 μs coincidence)
1 meV-1 eV	2
1 eV- 1keV	14
1keV-1MeV	14
1-2 MeV	3
2MeV- 100MeV	33
100-1000MeV	386
1GeV-10GeV	38
	490

in a year we pass from 1e10 expected neutron to **1.7e5 events**

Conclusion

• Sensitivity

- Quenching
- Background events
 - Currently under study to optimize and reduce unremovable events
 - Cosmic muons should be studied but potentially less dangerous because charged
- Weak Mixing angle can be measured with good precision
 - 4 times better that Coherent
- v-BDX reach is competitive respect to other CEvNS experiments

What to do next?

- Validate simulation with small apparatus
 - For cosmics (like BDX-proto)
 - For neutrons coming from dump (like BDX-hodo)
- The measurement at jlab is interesting also for RadCon