Measures of aerogel optical properties in Ferrara

L. Barion, M. Contalbrigo, L.L. Pappalardo INFN & University of Ferrara

CLAS12 Workshop – JLAB Februay 21st, 2012

Part 1: Measures of refracting index

The "standard prism" method

- The adjacent sides of the aerogel tile form a prism
- Measure the deviation of a laser beam passing through the aerogel tile edges
- The position of the laser beam spot is measured on a screen placed downstream

 The aerogel refractive index n can be determined by fitting the angular distribution of the spots of the refracted beam with the Snell-Descartes law:

$$\delta = \alpha - \beta + \arcsin\left\{n \cdot \sin\left[\beta - \arcsin\left(\frac{\sin\alpha}{n}\right)\right]\right\}$$

The Ferrara set-up

• The aerogel tile is positioned upon a graduated rotating stage

The Ferrara set-up

- The aerogel tile is positioned upon a graduated rotating stage
- Two lasers were used: red (λ =632.8 nm) and green (λ =532 nm)

The Ferrara set-up

- The aerogel tile is positioned upon a graduated rotating stage
- Two lasers were used: red (λ =632.8 nm) and green (λ =532 nm)
- The beam spots on the screen are recorded by a standard webcam (logitech 800X600 pxl)
- The screen was placed at a distance L=3965mm
- The "zero" position was obtained using the direct beam (i.e. without the aerogel tile)

Procedure

- 1. The intensity spectra are extracted from the analysis of the spot images (800x600 pxl)
- 2. The peaks are fitted with a parabola to obtain the position of the maxima

3. The positions of the maxima are plotted vs. the angle (α) of the incident beam and fitted with the **Snell-Descarted law**

Very preliminary results (aerogel n=1.03, 1cm)

Outlook (part 1)

- Evaluation of systematic errors:
 - measurement of distance L (± 0.5 cm)
 - measurement of angle $\alpha~$ (± 0.5 degrees)
 - pixel \rightarrow mm conversion
 - Laser/aerogel alignment
 - imperfections of aerogel edges

> Optimization of fit of intensity spectra (peaks):

- try different ranges

-

- try different fit functions
- > Optimization of final fit:
 - study impact of additional parameters (opening angle β and angular offset on α)
 - study impact of input values

> Extract **dispersion law** from measurements with **RED**, **GREEN** and **BLUE** lasers

Repeat measurements with n=1.05 aerogel tiles

Part 2: Measures of Transmittance

Our brand new spectrophotometer

The integrating sphere

transmittance measurement

The first measurements

The first measurements

Comparison with Bari measurements

Conclusions and outlook

Ferrara is developing skills and tools for the characterization of the optical properties of aerogel tiles for the CLAS12 RICH

- Very preliminary measurements of refractive index were performed with the standard prims method using red and green lasers
 - the procedure needs to be refined
 - the systematic uncertainties need to be evaluated and propagated
 - fits can be optimized
 - systematic studies are foreseen for different aerogel tiles (n, manufacture, etc)
 - a future use of a BLUE laser will allow for the extraction of the dispersion law
- A brand new high-performances spectrophotometer is being employed for transmittance measurements
 - preliminary results are in agreement with expectations and with previous measurements (Bari)