Requirements
Description of selected chips
MAROC implementation
MAROC Binary output tests

Frontend Electronics

M.Turisini (JLab) E. Cisbani (INFN-Roma/ISS) P. Musico (INFN-Genova)

CLAS12 RICH Technical Review, 2013 June 26-27

Requirements (for PMT readout)

Single PhotoElectron Sensitivity ~50 fC Number of channels 25600/sectorMAPMT anodes gain spread compensation 1:4 20kHz **Event Rate Dead Time** few% CLAS12 trigger latency 8 µs **Time resolution** $\sim 1 \text{ ns}$ to disentangle direct and reflected photons (can be done off line) **Positive HV anodes** reduce PMT electrostatic interference and noise Electronics needs to be able to comple with positive HV anodes

Choice of the Electronics

- On-the-shelf components (no brand new development)
- Fulfill the requirements
- High channel density
- Existing expertise in the collaboration

VMM1/FermiLab CLARO/INFN APV25/CMS DREAM/JLAB MAROC/LAL

non consolidated , interesting specs

early stage, few channels

not enough latency

CLAS12 Micromegas

ATLAS Luminometer

DREAM asic

Dead-timeless Readout Electronics Asic for Micromegas

- 0.4mm package,
- 17mm x17 mm footprint

PROs: analog pipeline, designed for JLAB12 CONs:dynamic range (?), time resolution.

Output: Analog MUX and Digital Sum

Single Channel (x64) - Design for Micromegas @ CLAS12

- Preamplifier, adj gain on 4 ranges (60fC,120fC,240fC,1pC)
- Shaper, adj peaking time 16 values from 50 ns to 1 μs
- Analog memory 512 cells, sampling rate 1-50MHz
- \bullet Discriminator, trigger pipeline 16 μs , sum of 64

PMT DREAM interface

Dead-timeless Readout Electronics Asic for Micromegas

R&D from Micromegas group

Attenuation board for H8500 with various divider ratio for testing

TEST SCHEDULED 2013 JULY at INFN-FRASCATI

MAROC asic

Multi Anode Read Out Chip

• 240-pin • 16 mm²

PROS: Designed for MAPMT apps, existing expertise CONS: limited latency, time resolution

Output: Analog MUX and Digital parallel

Single Channel (x64)

- Preamplifier, adj gain 8 bit
- Fast Shaper (25 ns) + Discriminator
- Slow Shaper (100 ns) + Internal ADC

Originally designed for ATLAS

In House MAROC based DAQ

Original system developed for Radionuclides Imaging

System 4096 Channels Many optical photons Binary output used for self trigger

Not Optimized for Single Photon

Adopted for the RICH prototype in analog output mode

Reproduce MAROC specs

MAROC from Analog to Binary

MAROC analog output works pretty well in RICH prototype test, but cannot be use in CLAS12 due to limited latency (200 ns)

MAROC binary information (64 parallel outputs) can be a valid alternative

see talk by Benjamin Raydo

- Binary data latency depends on external logic! Feasible
- Stability/sensitivity of threshold to single photoelectron? Tested
- Noise in MAROC fast shaper? Measured
- Implemented electronics not optimized for binary readout with external trigger (need significant FIRMWARE revision) Postponed

Light Test Setup

high density cable

- Assume analog output as reference
- Measure "digital" noise with PMT on, no light (and other configurations)
- Compare/Correlate analog and binary information, with internal and external (need synch) triggers
- Measure range (in threshold) of the ~single photon signal by threshold scan to estimate SNR

MAROC Analog Noise

Noise vs PMT-Ele Cable lenght

MAROC Digital Noise

Binary pedestal as derivative of the "hit efficiency" threshold scan

Dark Noise and SPE

Single PhotoElectron Level

Expertise in SiPM readout

Conclusion

Two candidate solutions for the RICH readout based either on MAROC or on DREAM

MAROC

- Must work in binary mode (analog for calibration only)
- binary mode suitable for single photoelectron detectability

• existing implementation can be adapted to CLAS12: SSP in place of the current controller will likely minimize the work to be done

DREAM

- Provide multisample analog information
- no needs of additional development for JLab integration
- coupling to PMT must be proved (test in july)

Electronics Test in July on DREAM and MAROC Detailed design once the chip has been defined

CLAS12 RICH Technical Review, 2013 June 26-27