Requirements
Description of selected chips
MAROC implementation
MAROC Binary output tests

Frontend Electronics

M.Turisini, E. Cisbani, P. Musico

CLAS12 RICH Technical Review, 2013 June 26-27

Requirements

Choice of the Electronics

- On-the-shelf components (no brand new development)
- Fulfill the requirements
- High channel density
- Existing expertise in the collaboration

VMM1/FermiLab CLARO/INFN APV25/CMS DREAM/JLAB MAROC/LAL

venerdì 21 giugno 2013

non consolidated , interesting specs early stage,few channels

not enough latency

CLAS12 Micromegas

ATLAS Luminometer

DREAM asic

Dead-timeless Readout Electronics Asic for Micromegas

Single Channel (x64)

- Preamplifier, adj gain on 4 ranges (60fC,120fC,240fC,1pC)
- \bullet Shaper, adj peaking time 16 values from 50 ns to 1 μs
- Analog memory 512 cells, sampling rate 1-50MHz
- \bullet Discriminator, trigger pipeline 16 μs , sum of 64

• 140-pin

- 0.4mm package,
- 17mm x17 mm footprint

PROS: analog pipeline, desigend for JLAB12 CONS: dynamic range (?), time res.

Output: Analog MUX and Digital Sum

Frontend Electronics CLAS12 RICH Technical Review, 2013 June 26-27

PMT DREAM interface

Dead-timeless Readout Electronics Asic for Micromegas R&D from Micromegas group

Attenuation board for H8500 with various divider ratio for testing

TEST SCHEDULED 2013 JULY at INFN-FRASCATI

Frontend Electronics

CLAS12 RICH Technical Review, 2013 June 26-27

MAROC asic

Multi Anode Read Out Chip

• 240-pin • 16 mm²

PROS: Designed for MAPMT apps, existing expertise CONS: limited latency, time resolution

Output: Analog MUX and Digital parallel

Single Channel (x64)

- Preamplifier, adj gain 8 bit
- Fast Shaper (25 ns) + Discriminator
- Slow Shaper (100 ns) + Internal ADC

Originally designed for ATLAS

Frontend Electronics CLAS12 RICH Technical Review, 2013 June 26-27

In House MAROC based DAQ

Original system developed for Radionuclides Imaging

System 4096 Channels Many optical photons Binary output used for self trigger

Not Optimized for Single Photon

Adopted for the RICH prototype in analog output mode

Frontend Electronics CLAS12 RICH Technical Review, 2013 June 26-27

Reproduce MAROC specs

Frontend Electronics CLAS12 RICH Technical Review, 2013 June 26-27

MAROC from Analog to Binary

MAROC analog output works pretty well in RICH prototype test, but cannot be use in CLAS12 due to limited latency (200 ns)

MAROC binary information (64 parallel outputs) can be a valid alternative

- Binary data latency depends on external logic!
- Stability/sensitivity of threshold to single photoelectron? test
- Noise in MAROC fast shaper? measured
- Implemented electronics not suitable for binary readout with external trigger (need significant FIRMWARE revision) postponed

TEST SETUP

high density cable

- Measure «digital» noise with PMT on, no light (and other configurations)
- Compare/Correlate analog and binary information, with internal and external (need synch) triggers.
 Analog assumed as reference (working)
- Measure range (in threshold) of the ~single photon signal by threshold scan to estimate SNR

MAROC Analog Noise

Noise vs PMT-Ele Cable lenght

Most of the noise is COMMON NOISE

Noise suppressed offline signficantly reduce the pedestal RMS

MAROC Digital Noise

Frontend Electronics CLAS12 RICH Technical Review, 2013 June 26-27

Single PhotoElectron Level

venerdì 21 giugno 2013

13

Expertise in SiPM readout

Use of NINO chip as a preamp in precise time measurement with SiPM (TOF-PET application)

Could be extended to SiPM for RICH

More integrated solutions to be considered

SiPM to NINO implementation

²²Na SiPM width spectrum (O-scope)

²²Na SiPM width spectrum (HPTDC)

Conclusion

Two candidate solutions for the RICH readout based either on MAROC or on DREAM

MAROC

- Must work in binary mode (analog for calibration only)
- binary mode suitable for single photoelectron detectability
- existing implementation can be adapted to CLAS12: SSP in place of the current controller will likely minimize the work to be done

DREAM

- Provide multisample analog information
- no needs of additional development for JLab integration
- coupling to PMT must be proved (test in july)

Detailed design once the chip has been defined

Frontend Electronics CLAS12 RICH Technical Review, 2013 June 26-27 venerdì 21 giugno 2013

CLAS12 RICH Technical Review, 2013 June 26-27