The CLAS12 Spectrometer

Ongoing upgrade of the CLAS detector. First beam expected in 2016.

Highly polarized 12 GeV electron beam

Luminosity up to 10^{35} cm⁻² s⁻¹

H and D polarized targets

Broad kinematic range coverage (current to target fragmentation)

RICH: Hadron ID for flavor separation (common to SIDIS approved exp.)

PAC30 report (2006): Measuring the kaon asymmetries is likely to be as important as pions The present capabilities of the present CLAS12 design are weak in this respect and should be strengthened.

Kaon SIDIS Program @ CLAS12

E12-09-08: Studies of Boer-Mulders Asymmetry in Kaon Electroproduction with Hydrogen and Deuterium Targets

e d → e'K X

RICH detector for flavor separation of quark spin-orbit correlations in nucleon structure and quark fragmentation

E12-09-07:

Studies of partonic distributions using semi-inclusive production of Kaons

E12-09-09:

Studies of Spin-Orbit Correlations in Kaon Electroproduction in DIS with polarized hydrogen and deuterium targets

Contalbrigo M.

The CLAS12 RICH Project

RICH goal:

$\pi/K/p$ identification from 3 up to 8 GeV/c and 25 degrees ~4 σ pion-kaon separation for a pion rejection factor ~ 1:500

INSTITUTIONS

INFN (Italy)

Bari, Ferrara, Genova, L.Frascati, Roma/ISS

Jefferson Lab (Newport News, USA)

Argonne National Lab (Argonne, USA)

Duquesne University (Pittsburgh, USA)

Glasgow University (Glasgow, UK)

J. Gutenberg Universitat Mainz (Mainz, Germany)

Kyungpook National University, (Daegu, Korea)

University of Connecticut (Storrs, USA)

UTFSM (Valparaiso, Chile)

RICH Base Configuration

1st sector allows:

- ✓ to start physics with un-polarized and longitudinal polarized target
- full coverage of the relevant azimuthal angle φ (w.r.t virtual photon)

2nd sector allows:

- ✓ to extend the kinematical coverage into the most interesting regions (high-Q² and high-P_T)
- the symmetric arrangement needed to control systematic effects in precision measurements with polarized targets (i.e. double ratio method)

Crucial for the study of parton dynamics related to angular momentum and spin-orbit effects with flavor sensitivity.

CLAS12 Momentum Range

Kaon flux 1 order of magnitude lower than $\pi \rightarrow \pi$ rejection 1:500 required

Aerogel mandatory to separate hadrons in the 3-8 GeV/c momentum range with the required large rejection factors

- \rightarrow collection of visible Cherenkov light
- **Use of PMTs:** challenging project, need to minimize the detector area covered with expensive photo-detectors

Aerogel Radiator

Nuclear Instruments and Methods in Physics Research A

The CLAS12 large area RICH detector

M. Contalbrigo **, E. Cisbani b, P. Rossi 5

CONTR Parriaria, Body (DOTR Ramoa and Institute Supervisore at Samith, Itsely (NEW Laboratori Nazionali di Francetti, Itsely)

ARTICLEINFO

ABSTRACT

Available online 28 October 2010 Reservorit: RICH CLAST2 Darticle identification A large area RCH detector is being designed for the CLAS12 spectrometer as part of the 12 GeV upgrade program of the jefferson Lab Experimental Hall-B. This detector is intended to provide excellent hadron identification from 3 GeV/c up to 10³⁵ cm² s⁻¹. Detailed feasibility studies are presented for two types of radiators, aerogef and liquid Cg⁺¹₁₄ from, in conjunction with a highly segmented light detector in the visible wavelength range. The basic parameters of the RICH are outlined and the resulting performances, as defined by preliminary simulation studies, are reported.

© 2010 Elsevier B.V. All rights reserved.

of the nucleon and quark hadronization processes [2]

Important observables that will be extensively investigated are transverse Momentum Distribution functions (TMDs) describing intonic spin-orbit effects and Generalized Parton Distribution ections (GPDs), containing information about the spatial disution of quarks and the relation (by a sum rule) to the elusive anic orbital momenta. Several experiments have been already ved by the JLab12 PAC to study kaon versus pion production exclusive and semi-inclusive scattering, providing access to or decomposition of the two sets of non-perturbative on functions.

lu: the nuck showi solenoi. forward polar angi and retains ain features of CLAS12 include a high operational of 10³⁵ cm⁻² s⁻¹, an order of magnitude higher than setup, and operation of highly polarized beam and 1s. The conceptual design of the CLAS12 detector is 1. The central detector with the high-field (5 T) 1 is used for particle tracking at large angles. The setter detects charged and neutral particles in the between 5 and 40°. It employs a 2 T torus magnet ector symmetry of CLAS. In the base equipment.

* Corresponding E-mail address:

0168-9002/\$ - see froi doi:10.1016/j.nima.201 owfe.infn.it (M. Contalbrigo)

er & 2010 Elsevier B.V. All rights reserved.

tion and event reconstruction can be achieved in this momentum range by replacing the existing low-threshold Cherenkov counte (LTCC) with a RICH detector without any impact on the baselir design of CLAS12.

2. The CLAS12 RICH

To fit into the CLAS12 geometry, the RICH should projective geometry with six sectors that cover the spac the torus cryostats and covering scattering angles from ' Fig. 3. Being downstream to the torus magnet at mc from the interaction point, the RICH has to cover a each sector spanning an area of the order of 4 m². Bei between detectors which are already in the construgap depth cannot exceed 1 m. The proposed solut focusing RICH.

A setup similar to the one adopted in Hall-(C_5F_{12} or C_6F_{14}) radiator and a Csl-deposited tional chamber as a UV-photon detector, (required pion rejection factor at momenta

The preliminary results on ongoing Mo on a GEANT3 toolkit with simplified geor a ee a m tace, ained ase, the roximity

ith a freon
vire propor c achieve the
than 3 GeV/c.
o studies, based
ad optical surface

Photon Detectors: MA-PMT

The only option to keep the schedule is the use of multi-anode photomultipliers (we consider the promising SiPM technology as the alternative)

- Mature and reliable technology
- Large Area (5x5 cm²)
- High packing density (89 %)
- ✓ 64 6x6 mm² pixels cost effective device
- High sensitivity on visible towards UV light
- Fast response

WAVELENGTH (nm)

The Hybrid Optics Design

The Hybrid Optics Design

Mirror Technology

Metalized Carbon Fiber substrate for spherical mirror

Self-supporting structure with minimal material budget (applications in physics experiments) Thin glass skin on a flat support for planar mirrors

Cost-effective technology for precise large area mirrors (applications in terrestrial telescopes)

Standard technologies already in use and commercially available

LHCB mirror

MAGIC-II telescope

RICH Module General Assembly

RICH module designed to be as much as possible close to the existing LTCC sector layout

RICH Construction Schedule

Milestone	Date
Concept of Design and Technology	2010
Tests of components and small prototype	2011
Test-beam with electrons (Frascati) and hadrons (CERN)	2012-2013
Start Engineering Phase	Feb. 2013
Hall-B review	June 2013
TDR	Aug. 2013
Physics Division review with DOE observers	Sep. 2013
Hamamatsu contract awarded	30 Sep. 2013
Electronics boards completed	July 2015
MA-PMT production completed	Dec. 2015
Mirror production completed	Sep. 2015
Start RICH assembly	Oct. 2016
Aerogel production completed	Dec. 2016
RICH project completed	June 2017

Conclusions

RICH construction phase started in September 2013

RICH module external layout modeled as LTCC

Structure lighter than LTCC validate by stress FEA model analysis

Waiting validation before starting procurement and optimizing internal elements

Gas system Design Parameters have been identified

N₂ flux to preserve aerogel performances

Air cooling for electronic box

Waiting Hall-B constraints before starting technical design and prototyping

S. Tomassini talk

R. Perrino talk