Struttura del nucleone: TMD Il RICH e HD-Ice per CLAS12

Marco Mirazita (LNF)

TMDs at leading order

TMDs can be accessed in Semi-Inclusive DIS reactions by looking at specific azimuthal modulations in ϕ and ϕ_S of the cross section with polarized beam and target

$$\sigma = \sigma_{UU} + S_T \sigma_{UT} \sin(\phi - \phi_S) + \lambda \sigma_{UL} \sin\phi + \dots$$

CLAS12 in Hall B

- Luminosity up to 10³⁵ cm⁻¹ s⁻¹
- Highly polarized electron beam
- H and D polarized targets
- Broad kinematic coverage, from target to current fragmentation

Required upgrades for nucleon 3D investigation:

RICH: Hadron ID from 3 to 8 GeV/ c for flavor separation

HD-Ice: new concept of transversely polarized target

PAC30 report (2006):

Measuring kaon asymmetries is likely to be as important as pions...... The present capabilities of the CLAS12 design are weak in this respect and should be strengthened

Layout of the RICH

Requirements:

π/k/p separation in the 3-8 GeV/c range
π rejection >500

Constraints:

- the detector must fit in 1m
- low material budget
- large area for the photodetectors (several m²)
- increasing azimuthal angle → decreasing momentum

Solutions:

- mirrors to focalize the light in small area
- variable aerogel thickness from 2 to 6/8 cm

Different pattern:

- Cerenkov photons from small angle, high momentum particles directly detected
- photons from large angle and lower momentum particles are reflected toward the photodetectors and pass twice through the aerogel

Reflected

-400

Track Incident Angle (deo

 \Rightarrow more than 10 p.e.

RICH simulations

Full simulation of the RICH detector

tuned with lab. and beam tests data

High efficiency in most of the kinematic plane
Low contamination

New Test Beam at CERN (2012)

RICH

04.

Direct light configuration

H8500

radiator

Some "on line" analysis

DIRECT LIGHT

Rayleigh scattering study

DIRECT LIGHT different refractive index and thickness

3 PMTs on the ring others off-ring n=1.05 n=1.06 n=1.04 background **π/K** 200 300 horizontal coordinat separation -200 -100 0 200 300 40 horizontal coordinate 0 100 **DIRECT LIGHT** chromatic effects study selecting Cerenkov photon wave σ_{chr} λ=550÷600nm λ=500÷550nm λ=400÷450nm -100 -200 -200 -100 100 200 300 -200 -300 -200 -100 100 200 200 300 horizontal coordinate horizontal coordinate horizontal coordinate

Reflected light configuration

The RICH project

INFN groups:

• Bari/Lecce, Ferrara, Frascati, Genova, ISS/Roma1 Many International Institutions:

- JLab (USA)
- Argonne National Laboratory (USA)
- Christopher Newport University (USA)
- University of Glasgow (UK)
- Universidad Tecnica Federico Santa Maria (Chile)

Timeline:

- middle 2015: installation of one sector in CLAS12
- second RICH sector for transverse physics (2018?)

JLab milestones for the next 5 years

The physics using the RICH detector is strongly supported by Jefferson Lab. Projected science highlights for the next 5 years submitted to NSAC/DOE:

A first generation of exclusive and semi-inclusive deep inelastic lepton scattering experiments worldwide promises a novel multi-dimensional view of nucleon structure in the valence quark region in terms of spatial and momentum tomography. However, virtually nothing is known concerning these quantities when strange quarks come into play. Experiments will provide for the first time precision measurements adding strangeness information for deep virtual kaon production. Further experiments will provide (transverse) momentum tomography for charged-kaon production, precisely measuring the strange quark momentum distribution for which recent HERMES data uncovered a surprising shape, and precisely constraining the spin/flavor structure of the light quark sea.

NSAC Subcommittee Meeting - September 7-9, 2012

 Support for the first RICH sector is included in the Lab's budget planning starting in FY13 and funds projected in FY14 and FY15

	FY13	FY14	FY15
RICH Hall B	200K\$	500K\$	500K\$

P. Rossi

HD-Ice: polarized frozen spin target

Advantages:

- large acceptance
- minimize nuclear background
- high polarization, up to 75% H and 40% D
 Disadvantages:
- long polarizing time (months)
- sensitive to local heating
- lower max luminosity: ~5 10³³ cm⁻² s⁻¹

Production process:

- dilution of HD gas
- polarization of the HD at 23mK and 15 T
- transfer to IBC at 2.8K and 0.5T

<u>6 GeV runs with HD-Ice</u>

Photon runs from Nov. 2011 to May 2012

- photon flux ~10⁸ γ/s
- relaxation time T1 ~ years

Electron runs Feb. and Mar. 2012

- Short relaxation time during beam exposure
- \Rightarrow heat removal needs improvement
 - faster raster
 - new cell geometry

Commissioning run foreseen with early Beam, before CLAS12 operations

TMD measurements are one of the main items of the JLab physics program at 12 GeV.

Large activity from INFN groups to provide CLAS12 with the necessary upgrades:

RICH detector

- simulations
- test of photodetectors: Multi-Anode PMT and SiPM
- characterization and development of aerogel
- Electronics: MAROC2 and MAROC3
- Design and construction of a detecor prototype
- Test beams

• HD-Ice target

- characterization of the HD gas and relative concentration of H² and D²
- contribution to the realization of cryostat for the gas concentration and of the In-Beam Cryostat
- NMR measurements
- design of the transverse holding magnet operating within the CD solenoid

Laser test of H8500 MAPMTs

- Laser intensity adjusted via the remote control and using neutral density filters
- The laser head remotely moved to scan the PMT surface
- Conventional electronics for data acquisition (CAEN V792)

Aerogel characterization

Collaboration with Budker Institute for high transmission aerogel production, with different thickness and refractive index

Single Photon Resolution

Calculation from Monte Carlo Simulation tested with experimental data in different configuration

A_{ut} measurement with RICH

Relative error increase

Empty symbols: direct only Full symbols: direct+reflected

Kaon to pion production rates in CLAS12

