A RICH DETECTOR FOR CLAS12

Contalbrigo Marco INFN Ferrara

Workshop on Probing Strangeness in Hard Processes: PSHP10

October 18-21, 2010 LNF INFN

Kaon program @ CLAS12

Approved by PAC34:

PR12-09-08: Studies of Boer-Mulders Asymmetry in Kaon Electroproduction with Hydrogen and Deuterium Targets

PR12-09-07:

Studies of partonic distributions using semi-inclusive production of Kaons

PR12-09-09: Studies of Spin-Orbit Correlations in Kaon Electroproduction in DIS with polarized hydrogen and deuterium targets

CLAS12 @ Hall-B

full pion / kaon / proton separation

over whole accessible momentum range of 2 – 8 GeV for SIDIS exp.

 π/K separation of 4-5 σ @ 8 GeV/c for a rejection factor 1:1000 Ratio K/ π ~ 0.1-0.15 for SIDIS experiments

The proximity focusing RICH

Freon+UV-light detection does not provide enough discrimination power in the 2-8 GeV/c momentum range (chromatic dispersion) → no cheap solution

Aerogel mandatory to separate hadrons in the 2-8 GeV/c momentum range

Collection of the visible Cherenkov light

Simulations with stand alone Monte Carlo (from Hall-A):

- GEANT3 toolkit
- Simplified geometry
- Ideal optical surfaces
- Rayleigh scattering treated as additional absorption
- No background accounted for

Preliminary studies of basic parameters:

- Aerogel refractive index and thickness
- Photon detector pixel size
- Gap dimension

Aerogel Transmission length

"Pinhole drying (PD)" method: artificially shrinks alcogel to obtain high index Transparency doubled for n>1.05 aerogel

M. Tabata @ RICH 2010

A.F. Danilyuk @ RICH 2010

Dens., g/cm ³	n	Lsc(400), mm
0.325	1.070	41.9
0.302	1.060	56.5

We assume 40 mm transmission length

Mean p.e. number (5-8 GeV/c)

Mean π/K separation (5-8 GeV/c)

PSHP 2010, 18-21 October, Frascati

Mean π/K separation (5-8 GeV/c)

PSHP 2010, 18-21 October, Frascati

Mean π/K separation (5-8 GeV/c)

LHC-B

3 mrad single photon resolution with ~ 3 mm comparable pixel size

HERMES experiment 7.6 mrad single photon resolution, dominated by the ~ 2 cm pixel size

P (GeV/c)

Ongoing activities:

♦ Improve simulation \rightarrow Geant 4 (Argonne,) + GEMC (JLab...)

A RICH detector for CLAS12: GEMC

Ongoing activities:

- ♦ Improve simulation \rightarrow Geant 4 (Argonne,) + GEMC (JLab...)
- ✤ Reduce costs → mirrors and light concentrators

The focusing mirror system

Goals: reduce active area minimize interference with TOF system allow larger aerogel thickness

The focusing mirror system

High density of hits and background: high segmentation / narrow in-time coincidence

High absorption in aerogel: semi-reflective mirror inside the gap

Reduced collection efficiency: compensated by ultra bialkali / thick aerogel for focalized light

Ongoing activities:

- ♦ Improve simulation \rightarrow Geant 4 (Argonne,) + GEMC (JLab...)
- ♦ Reduce costs \rightarrow mirrors and light concentrators
- Validate simulations and check performances

Test components (Glasgow,)

Prototype (INFN groups, JRA-WP3)

A RICH detector for CLAS12: MA-PMTs

SiPM

Requests:

- visible light detection
- compact
- single p.e. detection
- small pad size

MAPMTDimentional
outline (mm3)Effective
area (mm2)Pixel size (mm2)H850052x52x2849x495.8x5.8 (8x8)H950052x52x33.349x492.8x2.8 (16x16)

EFFECTIVE AREA

- Pros: excellent packing factor (89%)
- Cons: non optimized for single p.e. detection (not recommended by Hamamatsu)

• Cons: quite sizeable dead area (324/660 = 49%)

A RICH detector for CLAS12: MA-PMT tests

TESTS at Glasgow Un. Sep 13-16, 2010

http://nuclear.gla.ac.uk/~rachel/

- Laser: 633 nm
- HV: -900, -950, -1000 V
- Scan 5x5 cm 64 pixels in 1mm step
- Scan 1 pixel (6mm) in 0.5 mm step
- Scan at # incident angle with respect to the beam direction: 0°, 10°, 20°, 30°
- Scan with light catchers

MA-PMT Test: H8500

"Single p.e. spectrum" for a good pixel

Global scan at 1 mm step Not really uniform

0.5 mm scan on a single (good) pixel Almost insensitive to the photon incident angle

M. Contalbrigo

PSHP 2010, 18-21 October, Frascati

MA-PMT Test: R7564 SBA

"Few p.e. spectrum" for a standard pixel

Vertical Laser Position (mm) 0.9 -0.8 15 0.7 0.6 10 0.5 0.4 0.3 0.2 0.1 5 10 15 20 Horizontal Laser Position (mm)

To reduce dead area / active area: Light concentrators: grid of plastic foils covered by 3M DF200MA high-reflective film

A RICH detector for CLAS12: SiPMs

JRA WP3: 3D-Mom

the three-dimensional momentum structure of hadrons

the challenges:

- geometrical restrictions: small gap (~1 m), large surface
- → aerogel radiator in proximity focusing configuration
- experimental conditions:

high intensity electron beam, presence of magnetic fields

highly segmented and fast photo-detection system based d

the task:

R&D for final RICH detector design with optimized performance to cost ratio; prototype construction & test

SiPMs

Conclusions

Flavor separation accessible only with good hadron ID:

- CLAS12 has an approved physics program requiring a RICH
- Preliminary studies show aerogel plus visible light detection can match the RICH requirements
- Work is in progress to validate simulations and check performances by testing components and building a prototype