Dual Radiator RICH in EIC Hadron-endcap

INFN Groups and eRD14

INFN TO COMPASS RICH F-E DARKSIDE F-E

INFN BO ALICE TOF DARKSIDE SIPM

HERMES/Hall-A RICH Hall-A HCAL

24 March 2021

INFN RM

INFN CT

Enriched INFN expertise and manpower to support dRICH & SiPM program

INFN FE CLAS12 RICH

Collaborating with

INFN TS COMPASS RICH INFN BA Gaseous DET (eRD6)

dRICH Prototype

Dual radiator imaging Pressure vessel for gas & n tune Sensor & readout friendly

New: Mirror design Alignment system Support brackets

Goal:

* First test-beam in October '21 at CERN PS T10 in synergy with ALICE

Procurement initiated (INFN in-kind):

- * Radiators: C₂F₆ gas (n=1.0008) and aerogel (n=1.02, n=1.03) compatible with mRICH
- Standard vacuum components (pipes, clamps, o-rings)
- Custom flanges

dRICH Imaging

House the same principles and readout units used for mRICH test-beams Compatible with H13700 MAPMT and S12642 MPPC + MAROC front-end Allows to study the working principles and optical performance of the components

Counts

Goal:

- validate the dual radiator concept
- benchmark the simulation
- compare component alternatives

Next: dRICH Engineering

Migrate into EIC supported simulation platforms Implement into EIC benchmark detectors Study integrated PID for EIC detector proposals

PID Detector Challenge

dRICH sensor location relaxes requirements on neutron dose and material budget

Magnetic Field

1 T order of magnitude, varying orientation

SiPM: PET study up to 7 T 10.1109/NSSMIC.2008.4774097

Neutron Fluence

Moderate at dRICH location Reference value ~ $10^{11} n_{eq}/cm^2$ for several years at max lumi (10^{34})

SiPM: radiation mitigation for SPE actively studied till 10¹¹ n_{eq}/cm² and above 10.1016/j.nima.2019.01.013

SiPM SPE capability under study since 2012 @ INFN Contalbrigo++ NIMA 766 (2014) 22, Balossino ++ NIMA876 (2017) 89

SiPM Program

Assess performance of 3x3 mm² SiPM status-of-the-art selection

- (2x) OnSemiconductor microFJ-30020 and -30035
- (1x) Broadcom AFBR-S4N33C013
- (2x) Hamamatsu. S13360-3050VS and -3025VS
- (2x) Hamamatsu. S14160-3050HS and -3015PS
- (1x) FBK
- custom SIPM samples

Organized in matrices for irradiation and imaging tests Carrier board compatible with high-T annealing cycles

Test-board for lab characterization

SiPM Characterization

SiPM characterization vs temperature, pre- and post-irradiation, pre- and post- annealing

EIC Detector R&D Advisory Committee Meeting

2021 dRICH & SiPM Beam Tests

SiPM Irradition test

May '21 @ TIFPA (Italy)

Collimated proton beam

 10^{8} - 10^{11} n_{eq} fluence

Goal:

Assess post-annealing single-photon detection

dRICH + SiPM beam test October '21 @ CERN T10

Meson beam up to 10 GeV/c

Synergy with ALICE for Japanese (Chiba U.) aerogel test

Goal: Validate dRICH concept Assess SiPM usage in realistic experimental conditions

Next Steps: Optical Components

Existing facility to study detailed radiator optical properties and alternatives

Aerogel: Safe handling and characterization (refractive index, surface planarity, forward scattering)

Budker Institute (Russia, CLAS12), Chiba University (Japan, Belle-II), Aspen (USA, R&D)

Gas: Safe handling and purging

Alternatives to greenhouse gases

Interplay between radiators: UV filters, refractive index optimization

Next Steps: Optical Components

Existing facility to study detailed mirror optical properties and alternatives

Mirrors: Safe handling and characterization (surface map, radius of curvature, reflectivity)

Carbon fiber (mature) vs glass skin (cost-effective)

Mechanics: Composite materials from aeronautics technology

Stiff and light, supporting alignment

Pointlike source image

Surface Quality

Shack-Hartmann sensor

Reflectivity

24 March 2021

EIC Detector R&D Advisory Committee Meeting

Next Steps: SiPM Readout

Custom SiPM solutions:

exploit INFN conventions with producers e.g. FBK (development) and Lfoundry (production)

Custom readout solutions:

ToT readout based on
ALCOR (F/E) + ARCADIA (DAQ)
> 500 kHz per channel
> 50 ps time binning
(see talk on electronics & sensors)

ALCOR test board

FBK: 15 μm and 50 μm SPAD sample

SiPM carrier to ALCOR adapter board

Conclusions

Activity in line with the plan and recommendations discussed with EIC R&D Committee

Goal: address crucial PID aspects at EIC synergic with other R&D programs (gaseous RICH, electronics, sensors, mechanics....)

Cost-effective compact solution for hadron PID in the forward region in a wide kinematic range

- 1st year: baseline prototype complete and first test-beam
- ++: component alternatives and performance optimization

Investigation of novel single-photon detector solution to be operated in high magnetic field

1st year: post-irradiation characterization and imaging of a status-of-the-art SiPM selection ++: EIC dedicated solutions for sensors and electronics

