Dual Radiator RICH in EIC Hadron-endcap

INFN BO, CT, FE, LNF, RM1, TO

dRICH: flexible configuration (JLEIC, ePHENIX)

Radiators: Aerogel ($n_{AERO} \sim 1.02$) + Gas ($n_{C2F6} \sim 1.0008$)

Detector: 0.5 m²/sector , 3x3 mm² pixel Single-photon detection in ~1T magnetic field Outside acceptance, reduced constraints

ightarrow best candidate for SiPM option

Phase Space:

- Polar angle: 5-25 deg
- Momentum: 3-60 GeV/c

EIC_NET Meeting

dRICH Feasibility Study

Compact and cost-effective solution for continuous momentum coverage (3-60 GeV/c) Strong interest in the dRICH electron-pion separation capability

Studied with full Geant4 simulation, with Bayesian optimization and analytic parameterizations

L. Barion et al., JINST 15 (2020) 02, C02040 E. Cisbani et al., JINST 15 (2020) 05, P05009

dRICH Prototype

Procurement initiated (INFN in-kind):

- * Aerogel (n=1.02, n=1.03) with dimensions compatible with mRICH
- Standard vacuum components (pipes, clamps, o-rings)
- Custom flanges

Survey ongoing:

• Gas / mirrors / mechanics

dRICH Imaging

House the same principles and readout units used for mRICH test-beams Compatible with H13700/S12642 + MAROC front-end Allows to study the working principles and optical performance of the components

dRICH Key Hardware Components

Component	Function	Specs/Requirements	Critical Issues / Comments
Mechanics	Support all other components and services Keep in position and aligned	Large volume gas and light tightness; alignment of components	Technically demanding but feasible; no major challenges expected
Optics (Mirrors)	Focus (expecially for gas) and deflect photons out of particle acceptance and reduce sensor surface	sub-mrad precision reflectivity ≥ 90% low material budget	Spherical mirrors technology of CLAS12 suitable (optical fiber and/or glass skin); similar geometry; Development for cost reduction
Aerogel Radiator	Cover Low Mom. Range between TOF and Gas	≥3σ π-K separation up to Gas region (~13 GeV)	Procurement: currently 1 active provider (2 main producers + 1 potential) Long term stability assessment in conjunction with gas
Gas Radiator	Cover High Mom. Range above Aerogel	≥3σ π-K separation up to ~50 GeV and overlap to aerogel	Greenhouse gas: potential procurement issue Search for alternatives
Photon Detector	Single photon spatial detection	Magnetic field tolerant and radiation hardness; ~ few mm spatial resolution	MCP-PMT is likely doable, but expensive. LAPPD may represent an alternative. R&D on SiPM: a promising, quicky improving, wordwide pursued, and cheap technology.
Electronics	Amplify and shape single photon analog signal, convert to digital, transfer to DAQ nodes	Low noise Time res. ~ 0.5 ns μs signal latency	MAROC3 based readout available for prototyping; final choice will depend on sensor. ASIC development for optimised streaming readout (discrimination vs sampling)

dRICH Detector Environment

dRICH sensor location relaxes requirements on neutron dose and material budget

Neutron Fluence

Moderate except for very forward regions Reference value ~ 10 ¹¹ n_{eq}/cm^2 for several years at max lumi (10³⁴)

SiPM: radiation mitigation for SPE actively studied till 10¹¹ n_{eq}/cm² and above 10.1016/j.nima.2019.01.013 10.1016/j.nima.2018.10.191

Magnetic Field

1 T order of magnitude, varying orientation

SiPM: PET study up to 7 T 10.1109/NSSMIC.2008.4774097

SiPM SPE capability under study since 2012 @ INFN

Contalbrigo++ NIMA 766 (2014) 22, Balossino ++ NIMA876 (2017) 89

SiPM and Electronics

EIC Detector Advisory Committee, Report on dRICH 11,

11/25/2019

"An important remaining issue is the SiPM noise rate after irradiation which should be clarified. We expect that it will take 2-3 years to fully understand if SiPMs can be used in RICH detectors at EIC"

EIC Detector Advisory Committee, Report on Electronics 01/30/2020

"The committee again recommends the group to re-examine options that do not rely on waveform sampling, e.g., a TOT-based design like the TOPFET2 ASIC, which is radiation hard, has low power consumption and has achieved a very good resolution per single photon with SiPMs."

INFN Groups and eRD14

INFN-TO COMPASS RICH F-E DARKSIDE F-E Enriched INFN expertise and manpower to support dRICH, SiPM (and eRD14) program INFN-BO ALICE TOF DARKSIDE SIPM

SiPM Program

Enriched INFN manpower and expertise towards a comprehensive program of post-irradiation SiPM + electronics single photon detection assessment.

Done so far: use few samples for the study of

- SiPM use for Cherenkov application prior of irradiation
- SiPM single photon counting as a function of radiation dose

Short term goal (~ 1 year):

- Survey of SiPM available candidates
- Use in-house dedicated electronics (for cooled SiPM + annealing)
- SiPM use for Cherenkov application post (EIC-like) irradiation (proof-of-principle)

Long term plan (~2-3 years):

- Systematic study towards performance optimization
- SiPM engineering with producers
- Temperature treatment protocols vs radiation
- Assess discrimination vs sampling readout performance post-irradiation
- Development of an optimized streaming readout

SiPM Irradiation Program

SiPM characterization and proton irradiation @ Proton Therapy Center of Trento, IT

dRICH – SiPM

ALCOR chip: under development at INFN: ToT architecture for cryogenic application 32 channels, 50 ps TDC, >500 kHz/channel

- **SiPM:** sampled for vendor, type and dose (at groups of 8) organized in 8 x 4 matrices for imaging
- **SiPM board:** bias distributors and signal pre-conditioning compatible with temperature treatments and laboratory characterization

ALCOR board: connecting to a Xilinx FPGA via firefly lines

Activity Plan & Deliverables

As discussed with the EIC R&D Committee in September 2019

Conclusions

INFN has developed a plan to address the EIC R&D Committee recommendations

To address crucial PID aspects at EIC:

cost-effective compact solution for hadron PID in the forward region in a wide kinematic range

investigation of novel single-photon detector solution to be operated in high magnetic field

Goal: have in one year a full-chain assessment (proof-of-principle) of the proposed approach and investigated technologies

A mandatory step for INFN and eRD14 given the YR, EoI and announced Call for Detectors in FY2021

Backup

dRICH Resolution

1 p.e. error		Aero	ogel	Gas			
(mrad)		Demo	dRICH	Demo	dRICH		
Pixel	(3mm pixel)	1.9	(0.6)	0.6	(0.5)		
Chromatic	(300 nm filter)	1.8	(2.2)	0.6	(0.5)		
Emission	(1 cm out of focus)	0.3	(0.3)	0.4	(0.6)		
Tracking	(0.5 mrad)	0.4	(0.3)	0.4	(0.4)		
Total		3.0	(2.3)	1.1	(1.0)		

SiPM Candidates Survey

Hamamatsu (a sort of reference), Broadcom/FBK (a sort of INFN partner in Italy),

supplier	model	type	pixel (mm)	cell (um)	mount / connector	window	PDE (%) peak	DCR (kHz/mm2)	PDE / DCR	package fill factor (%)	x-talk (%)	after- pulse (%)	Vop (V)	CTR (ps)	rise time (ps)
Ketek	PM3325-WB-D0	single	3	25	smt	glass	45	125	0.36	82	26	5	30	70	110
Ketek	PM3315-WB-C0	single	3	15	smt	glass	31	125	0.25	82	18	5	30		630
Ketek	PA3325-WB-0404	4x4	3	25	Samtec	glass	45	125	0.36	80	26	5	30		110
Hamamatsu	S13360-3025CS	single	3	25	ceramic	silicone	25	45	0.56	23	1		60		
Hamamatsu	S13360-3025PE	single	3	25	smt	epoxy	25	45	0.56	54	1		60		
Hamamatsu	S13360-3050CS	single	3	50	ceramic	silicone	40	55	0.73	23	3		60		
Hamamatsu	S13360-3025PE	single	3	50	smt	epoxy	40	55	0.73	54	3		60		
Hamamatsu	S13360-3050VE	single	3	50	smt	epoxy	40	55	0.73	78	3		60		
Hamamatsu	S13361-3050NE-04	4x4	3	50	smt	ероху	40	55	0.73	85	3		60		
Hamamatsu	S14160-3050HS	single	3	50	smt	silicone	50	165	0.30	78	7		40	60	
Hamamatsu	S14161-3050HS-04	4x4	3	50	smt	silicone	50	165	0.30	85	7		40	60	
Hamamatsu	S14160-3015PS	single	3	15	smt	silicone	32	78	0.41	54	< 1		45		
- Idinariated	00	og.o			0.111	Childente									
Hamamatsu	S13362-3050DG	single	3	50	metal	glass	40	25	1.60	4	3		55		
SensL	C-Series 30050	single	3	50	smt	compound	35	33	1.06	56	10	0.6	25		600
SensL	ARRAYC-30035-16P-PCB	4x4	3	35	Hirose	compound	31	33	0.94	56	7	0.2	25		600
SensL	J-Series 30035	single	3	35	smt	glass	38	50	0.76	94	8	0.75	25		90
SensL	J-Series 30020	single	3	20	smt	glass	30	50	0.60						
SensL	ARRAYJ-30035-16P-PCB	4x4	3	35	Hirose	glass	38	50	0.76	86	8	0.75	25		90
AdvanSid	ASD-NUV3S-P		3	40		epoxy	43	100	0.43	65		4	26		
Broadcom	AFBR-SGN33C013	single	3	30	smt	glass	54	255	0.21	91		1	10		
Broadcom	AFBR-S4N44P163	4x4	3	30	smt	glass	55	255	0.22	92		1	10		
Broadcom	AFBR-S4N44C013	single	3.72	30	smt	glass	55	270	0.20	92					

INFN Groups and eRD14

INFN-FE CLAS12 RICH

Several INFN groups interested to pursue dRICH and other activities within the eRD14 Consortium

INFN-RM1 HERMES RICH Hall-A Tracking

INFN-LNF CLAS12 RICH

08/June/2020

INFN-CT Hall-A HCAL

17

Post-irradiation use: conjugate proper temperature conditioning and signal processing

Temperature control and dedicated electronics Low-temperature discrimination + possible filtering

ALCOR - A Low Power Chip for Optical Sensor Readout

- 32-pixel matrix mixed signal ASIC
- the chip performs amplification, signal conditioning and event digitisation, and features fully digital I/O.
- each pixel reads an SiPM (up to 1 cm², compatible with smaller pixels)
- Pixel hosts SiPM VFE, leading-edge discriminator, 4 TDCs, charge integrator, digital control and interface
- Single-photon time tagging mode or time and charge measurement
- 64-bit (32-bit on time tagging mode) event and status data is generated on-pixel and propagated down the column
- Up to 4 LVDS TX data links used, SPI configuration
- operation from 10 MHz up to 320 MHz (TDC binning down to 50 ps)
- 10 MHz clock, 500 ps r.m.s. time resolution on single photon

DARKSID

Manuel Da Rocha Rolo (INFN Torino)

Integrated FEE for Low-Background LAr DM

SiPM Radiation Damage

10¹¹ n_{eq}/ cm² seems a manageable fluence post annealing and working at -30°C

200 x DCR penalty factor under control with a dedicated fast electronics (ALCOR)

2 x 10⁵ Gbit/sector throughput ok with standard technology

