Dual Radiator RICH in EIC Hadron-endcap

INFN & DUKE

dRICH: flexible configuration (JLEIC, ePHENIX)

Radiators: Aerogel ($n_{AERO} \sim 1.02$) + Gas ($n_{C2F6} \sim 1.0008$)

Detector: 0.5 m²/sector , 3x3 mm² pixel

Single-photon detection in ~1T magnetic field Outside acceptance, reduced constraints

ightarrow best candidate for SiPM option

Phase Space:

- Polar angle: 5-25 deg
- Momentum: 3-60 GeV/c

dRICH Feasibility Study

Compact and cost-effective solution for continuous momentum coverage (3-60 GeV/c) Strong interest in the dRICH electron-pion separation capability

Studied with full Geant4 simulation, with Bayesian optimization and analytic parameterizations

L. Barion et al., JINST 15 (2020) 02, C02040 E. Cisbani et al., JINST 15 (2020) 05, P05009

dRICH Prototype

Procurement initiated (INFN in-kind):

- * Aerogel (n=1.02, n=1.03) with dimensions compatible with mRICH
- Standard vacuum components (pipes, clamps, o-rings)
- Custom flanges

Survey ongoing:

• Gas / mirrors / mechanics

dRICH Imaging

House the same principles and readout units used for mRICH test-beams Compatible with H13700/S12642 + MAROC front-end Allows to study the working principles and optical performance of the components

EIC Detector R&D Advisory Committee Meeting

dRICH Key Hardware Components

Component	Function	Specs/Requirements	Critical Issues / Comments
Mechanics	Support all other components and services Keep in position and aligned	Large volume gas and light tightness; alignment of components	Technically demanding but feasible; no major challenges expected
Optics (Mirrors)	Focus (expecially for gas) and deflect photons out of particle acceptance and reduce sensor surface	sub-mrad precision reflectivity ≥ 90% low material budget	Spherical mirrors technology of CLAS12 suitable (optical fiber and/or glass skin); similar geometry; Development for cost reduction
Aerogel Radiator	Cover Low Mom. Range between TOF and Gas	≥3σ π-K separation up to Gas region (~13 GeV)	Procurement: currently 1 active provider (2 main producers + 1 potential) Long term stability assessment in conjunction with gas
Gas Radiator	Cover High Mom. Range above Aerogel	≥3σ π-K separation up to ~50 GeV and overlap to aerogel	Greenhouse gas: potential procurement issue Search for alternatives
Photon Detector	Single photon spatial detection	Magnetic field tolerant and radiation hardness; ~ few mm spatial resolution	MCP-PMT is likely doable, but expensive. LAPPD may represent an alternative. R&D on SiPM: a promising, quicky improving, wordwide pursued, and cheap technology.
Electronics	Amplify and shape single photon analog signal, convert to digital, transfer to DAQ nodes	Low noise Time res. ~ 0.5 ns µs signal latency	MAROC3 based readout available for prototyping; final choice will depend on sensor. ASIC development for optimised streaming readout (discrimination vs sampling)

dRICH Detector Environment

dRICH sensor location relaxes requirements on neutron dose and material budget

Neutron Fluence

Moderate except for very forward regions Reference value ~ 10 11 n_{eq}/cm² for several years at max lumi (10³⁴)

SiPM: radiation mitigation for SPE actively studied till 10¹¹ n_{eq}/cm² and above 10.1016/j.nima.2019.01.013 10.1016/j.nima.2018.10.191

Magnetic Field

1 T order of magnitude, varying orientation

SiPM: PET study up to 7 T 10.1109/NSSMIC.2008.4774097

SiPM SPE capability under study since 2012 @ INFN

Contalbrigo++ NIMA 766 (2014) 22, Balossino ++ NIMA876 (2017) 89

SiPM and Electronics

NIMA 876(2017) 89 S12572 standard technology # @ 0° C Pixel S13360 trench technology 30 eltier cell cooling 80C — S13360 Before Irradiation Down to -30° in N₂ SiPM @ -30°C ---- S12572 70C 25 600 NIMA 876 (2017) 89 20 °C-1 500 15 400 S13360 After Irradiation 300 10 ---- S12572 (few CLAS years) 50 40 30 200 5 10C 20 25 30 Pixel # Normalized Area

EIC Detector Advisory Committee, Report on dRICH

11/25/2019

"An important remaining issue is the SiPM noise rate after irradiation which should be clarified. We expect that it will take 2-3 years to fully understand if SiPMs can be used in RICH detectors at EIC"

EIC Detector Advisory Committee, Report on Electronics 01/30/2020

"The committee again recommends the group to re-examine options that do not rely on waveform sampling, e.g., a TOT-based design like the TOPFET2 ASIC, which is radiation hard, has low power consumption and has achieved a very good resolution per single photon with SiPMs."

mRICH test-beam @ Fermilab 2018

SiPM irradiation 2016

INFN Groups and eRD14

INFN-TO COMPASS RICH F-E DARKSIDE F-E Enriched INFN expertise and manpower to support dRICH, SiPM (and eRD14) program INFN-BO ALICE TOF DARKSIDE SIPM

SiPM Program

Enriched INFN manpower and expertise towards a comprehensive program of post-irradiation SiPM + electronics single photon detection assessment.

Done so far, use few SiPM samples for the study of

- Cherenkov application prior of irradiation
- Single photon counting vs dose and temperature

Short term goal (~ 1 year):

- Characterize irradiated status-of-the-art SiPM candidates
- Exploit in-house dedicated electronics (ToT based, for cooled SiPM + annealing)
- Cherenkov imaging after EIC-like irradiation (proof-of-principle)

Long term plan (~2-3 years):

- Systematic study towards performance optimization
- SiPM engineering with producers
- Temperature treatment protocols vs radiation
- Assess discriminating vs sampling readout performance
- Development of an optimized streaming readout

Key: Temperature treatment & dedicated readout

23/July/2020

SiPM Characterization

SiPM characterization and proton irradiation @ Proton Therapy Center of Trento, IT

EIC Detector R&D Advisory Committee Meeting

SiPM Readout

- **SiPM:** sampled for vendor, type and dose (at groups of 4) organized in 8 x 4 matrices for imaging
- **SiPM board:** bias distributors and signal pre-conditioning compatible with temperature treatments and laboratory characterization
- ALCOR chip: under development at INFN: ToT architecture for cryogenic application 32 channels, 50 ps TDC, >500 kHz/channel

ALCOR board: connecting to a Xilinx FPGA via firefly lines

Activity Plan & Deliverables

As discussed with the EIC R&D Committee in September 2019 for TDR readiness in 2023

Conclusions

INFN has developed a plan to address the EIC R&D Committee recommendations

To address crucial PID aspects at EIC:

cost-effective compact solution for hadron PID in the forward region in a wide kinematic range in 1 year: prototype complete and first test-beam

investigation of novel single-photon detector solution to be operated in high magnetic field in 1 year: post-irradiation characterization and imaging of a status-of-the-art SiPM selection

	100%	80%	60%
Postdoc, INFN/JLAB, 2 months (Luca Barion)	\$6k	\$6k	\$6k
Postdoc, INFN/JLAB, 6 months (Aram Movsisyan)		\$20k	\$12k
Technical personnel, 6 months		\$20k	\$20k
Prototype Components	\$22k	\$10k	5k
Travel	\$6k	\$2k	\$2k
Total	\$74k	\$58k	\$45k

Goal: have in one year a full-chain assessment (proof-of-principle) of the proposed approach and investigated technologies

A mandatory step for INFN and eRD14 given the YR, EoI and announced Call for Detectors in FY2021