dRICH Collaboration

Compact cost-effective solution for particle identification in the high-energy endcap at EIC

Forward particle detection

Hadron ID in the extended 3-50 GeV/c interval

Support electron ID up to 15 GeV/c

Main challenges:

Cover wide momentum range 3 - 60 GeV/c-> dual radiatorWork in high (~ 1T) magnetic field-> SiPMFit in a quite limited (for a gas RICH) space-> curved detector

INFN Background

CLAS12 RICH

COMPASS RICH

ALICE HMPID

HERMES RICH

DARKSIDE

ALCOR

dRICH Sub-System Organization

6.10.04 Particle Identification Level-3		CAM from Project		
\Box				
6.10.04.03 dRICH	Level-4	CAM from Project + DSTC from EPIC (M. Contalbrigo)		
₽		Work packages lead from EPIC Work packages not yet active		
Photo-Detector	Level-5	R. Preghenella, INFN-BO, INFN-FE, INFN-CS, INFN-SA, INFN-LNF, INFN-CT, NISER		
Front-end Asics	Level-5	F. Cossio, INFN-TO, INFN-BO	Interlock	Level-5
Data-acquisition	Level-5	P. Antonioli, INFN-BO, INFN-FE	Slow Control	Level-5
Mechanics	Level-5	A. Saputi, INFN-FE, INFN-CT, INFN-GE, JLAB, BNL	Cooling	Level-5
Gas radiator	Level-5	F. Tessarotto, INFN-TS, BNL	Gas purging	Level-5
Mirror	Level-5	A. Vossen, DUKE, INFN-FE	Detector box	Level-5
Aerogel Radiator	Level-5	G. Volpe , INFN-BA, INFN-FE, RICH Consortium	Alignment	Level-5
High-Pressure	Level-5	S. Dalla Torre, INFN-TS, INFN-FE, INFN-LNS	Power Supply	Level-5
Simulation		C. Chatterjee, INFN-TS, DUKE, INFN-FE, RICH Consort.		Level-5

ePIC dRICH

Interferences: material budget concentrated beheind the barrel ecal and its support ring readout electronics design in order to minimize the detector box volume

Acceptance: defined by pipe and barrel ecal minimize material budget with the use of composite materials

dRICH Photo-Detector

SiPM array

ALCOR chip

Photon Detector Unit (PDU):

Compact to minimize space

- 4x Hamamatsu S13361-3050HS SiPM arrays
- 4x Front-End Boards (FEB)
 - 4x ALCOR chip (ToT discrimination)
 - 4 x Annealing Circuitry
- 1x Read-Out Board (RDO)
 - 1x Cooling plate (< -30 C)

Active area is shaped to resemble the focal surface and best exploits the focalization

Detector box:

Shaped to fit the space

Quartz window

Cooling for sensors and electronics

Power distributing patch panel

Heat insulation

Readout Components

SiPM carrier board with 256 channels and flex connector circuits.

2x ALCOR front-end card and the adapter board

ALCORv64 digitazing chip

MasterLogic card to control SiPM bias voltage & monitoring service

Readout Board to configure and connet to the back-end

SiPM Detection Plane

Photon Detection Unit Streaming readout mode

Readout Box 8 PDUs, 2048 channels

Prototype Working Pooint -40:-20 C

 20 x 20 x 20 cm³

May 2024 Test-beam

SiPM Detector

Tracking GEM+SciFi

Successful campaign:

Mixed hadron beam 2-11 GeV/c

Various aerogel samples (1.020-1.026)

Two gas radiators (C_2F_6, C_4F_{10})

Two SiPM working points (-40 C and -20 C)

Two tracking systems (GEM & SciFi)

Many optical fiters

Beam line Cherenkov tagging

Dual Radiator Tests

Streaming Data-Acquisition

Goals: Maximise modularity (detector shaping) and capability (data stream)

DAM Hierarchy: Maximum data rate capability till DAM-L1

Big data reduction at DAM-L1 with external input (2 µs latency interaction tagger) DAM-L2 data aggregation per sector allows for effective data-reduction algorithms

Radiators

Aerogel characterization & optimization

gTrans + Fit

Gas characterizaiton & optimization

C) (* x 52794

liquid

tank

liquifier

storage

Sensors: INFN (CS/SA/CT) – TS – BO

Aerogel: Temple - BNL – INFN (BA)

Quality Assurance

Mirror: JLab – Duke – INFN (FE)

Surface Quality

dRICH Construction Items

	INFN	Shared	DOE
Mechanics	Detector box (FE, LNS)	Vessel (FE) Insulation (TS)	Gas & mirror supports (JLab) Installation tools (JLab/BNL
Photo-detector	Sensors (BO,CS,SA,CT,TS) PDU (cool plate) (BO)		
Readout	ALCOR (TO,) FEB (TO,) Master Panel (FE)		
DAQ	RDO (BO)	Data stream (GE, RM1, RM2)	DAM (BNL)
Radiators	Aerogel (BA)		Gas (BNL) Aerogel QA (Temple, BNL)
Mirror			Mirror (JLab/Duke) Coating (Duke)
Services			Gas Plant (BNL) Cooling Plant (BNL) Power Plant (BNL)
Monitors	Gas monitor (TS)	Slow Control/Interlock () LED+Laser	

INFN Engagement

BO: new space under discussion (ex Tier1) & elec. + mech. support

CS: lab space

TS: lab space & tech. support

TO: micro-electronic workshop

LNS & CT: tech. support

RM1 & RM2: tech support

GE: lab space & electr. support

SA: lab (+new) space & tech. support

BA: lab (+new) space & tech. support

FE: lab space, clean room & elec. + mech. support

- Assumptions: 6 months delay of CD3 (now on spring 2026)
 - no delay of installation (now on Oct 30: unlikely)
 - possibility to split the major procurements in bacthes/years

compressed (and aggressive) schedule

