eRD102 - dRICH

Marco Contalbrigo INFN - Ferrara

EIC Project R&D – DAC Meeting, August 28th 2024

ePIC Requirements

Main challenges:	
Cover wide momentum range 3 - 50 GeV/c	-> dual radiator
Work in high (~ 1T) magnetic field	-> SiPM
Fit in a quite limited (for a gas RICH) space	-> curved detecto

Electrons and Photons π/K/p Nomenclature η Resolution Min E PID p-Range Separation σ_F/E Photon 1.0 to 1.5 1.5 to 2.0 2%/E 3σ e/π ⊕ (4*-12)%/√E 2.0 to 2.5 Forward Detectors 50 MeV ≥ **3**σ up to 15 GeV/c ≤ 50 GeV/c **⊕**2% 2.5 to 3.0 3.0 to 3.5

Essential for semi-inclusive physics due to absence of kinematics constraints at event-level

Acceptance in oseudo-rapidity defined by barrel and beam pipe

ePIC dRICH

Acceptance: minimize material budget with the use of composite materials CFRP skins + honeycomb sandwich (~1 %) for windows, 1 cm bulk CFRP (~ 4 %) for round vessel

Interferences: material budget concentrated beheind the barrel ecal and its support ring readout electronics designed in order to minimize the detector box volume

dRICH Photo-Detector

SiPM array

ALCOR chip

Photon Detector Unit (PDU):

Compact to minimize space

- 4x Hamamatsu S13361-3050HS SiPM arrays
- 4x Front-End Boards (FEB)
 - 4x ALCOR chip (ToT discrimination)
 - 4 x Annealing Circuitry
- 1x Read-Out Board (RDO)
 - 1x Cooling plate (< -30 C)

Active area is shaped to resemble the focal surface and best exploits the focalization

Detector box:

Shaped to fit the space

Quartz window

Cooling for sensors and electronics

Power distributing patch panel

Heat insulation

Achieved in 2023 (DAC Meeting)

Double ring imaging with baseline detector and reference readout (H13700 + MAROC from CLAS12 RICH). Performance in line with expectations except for aerogel single-photon angular resolution (worse by a factor ~ 1.5)

Reference readout from CLAS12 RICH: H13700 MA-PMTs + ALCOR3 ToT chip

Gas ring coverage: 60% Aerogel ring coverage: 40 %

Optics at variance with respect EIC

eRD102 Landscape

- 23' August: dRICH test-beam (aerogel & dual-radiator optics with reference detector)
- 23' September: **EIC SiPM Review** (long lead procurement)
- 23' October: **dRICH test-beam** (SiPM-ALCOR photon detection unit)

Generic R&D (pressurized RICH)

- 24' March: EIC R&D Day
- 24' May: dRICH test-beam (extended EIC-driven photo detector)
- 24' June: DAQ and ASIC review (RDO and ALCOR)

25' July

Validation of real scale prototype with ePIC driven component demonstrators

Aerogel Radiator: Optimization

Aerogel Radiator

INFN in-kind in synergy with ALICE3

Ongoing: reproducibility at n=1.026

Next step: move to real dimensions & specs

ePIC quality specs: clarity, absorption, planarity, dimension tolerance, ...

Squared and water-jet cutting shaped

- 15 x 15 x 3 cm2 volume
- 18 x 18 x 2 cm2 volume (BELLE-II standard)

Mirrors

eRD102 FY24 program ongoing: CFRP substrate validation	Substrate samples for coating tests (ongoing at Stony Brook)	
Coating Optimization		
Cost-effective mandrel validation		
Optimized core structure validation	Small demonstrator	
Annex C. Technical Requisite	Mid-size demonstrator	
Each spherical mirror is supplied with a spot-size measurement, a report on dimensions, no reflective coating. 	Ø500,33 A A	R2200
The spherical mirrors are replicated from the same mandrel. The latter is realized with the novel cost-effective technology that reduces the mandrel total mass and cost. Each mirror fulfills the following optical quality specification:		
 Radius within 1% of nominal RoC value (the nominal RoC values is defined by the customer before production in the range 2000 mm +/- 10%), Roughness < 2 nm, Pointlike image spot size D0 < 2.5 mm, 		
 Compatibility with fluorocarbon gases (C₂F₆), Compatibility with SiO₂ reflecting coating. 	A —	A-A (1:4)

Quality Assurance

Aerogel: Temple - BNL - INFN (BA)

Mirror: JLab – Duke – INFN (FE)

Sensors: INFN (CS/SA/CT) – TS – BO

Performance with reference readout (MAPMT+MAROC) in line with expectations (gas and n=1.026 aerogel) EIC-driven PDU commissioned at the last test-beam in October 2023

Detector Prototype

2024 Test-beam Program

Successful campaign:

Mixed hadron beam 2-11 GeV/c

Various aerogel samples (1.020-1.026)

Two gas radiators (C_2F_6 , C_4F_{10})

Two SiPM working points (-40 C and -20 C)

Many optical fiters

Two tracking systems (GEM & SciFi)

Beam line Cherenkov tagging

Temperature monitor

2024 Test-beam Program

and w/o gas signal*

reconstructed radii at 10 GeV/c with no selection applied

*Preliminary data with no data quality, tracking nor alignment

eRD102-FY24 🗸

2024 Test-beam Program

Successful campaign:

- Mixed hadron beam 2-11 GeV/c
- Various aerogel samples (1.020-1.026)
- Two gas radiators (C_2F_6 , C_4F_{10})
- Two SiPM working points (-40 C and -20 C)
- Many optical fiters
- Two tracking systems (GEM & SciFi)
- Beam line Cherenkov tagging

Temperature monitor

Photon Detector

Photo Sensors

Detailed sensor performance comparison studies

Readout Chip

ALCOR.v3: 64 channels and sutter FEB.v2: front-end-board for ALCOR64

Readout Components

SiPM carrier board with 256 channels and flex connector circuits.

Readout Board to configure and connet to the back-end

MasterLogic card to control SiPM bias voltage & monitoring service

INFN in-kind + PED towards final PDU design: RDO.v1: read-out-board fake-FEB.v1: RDO adapter to existing FEB Carrier.v3: SiPM carrier board MasterLogic.v2: master distribution panel

dRICH Prototype Evolution

2024

2023

Gas Vesse

Aerogel

eRD102-FY25 Real scale prototype Realistic component & service integration Off-axis optics beam test

2025

Main achievements: validation of dual radiator concept, C_2F_6 radiator gas, aerogel with optimized refractive index, ePIC driven-readout plane with SiPM+ALCOR

EIC Project R&D - DAC Meeting - 28th August 2024

Real Scale Prototype

- Mechanical properties of a realistic composite structure
- Assembling and gas/light tightness
- Optical septa and thermal model
- Support of component demonstrators (aerogel, mirrors)
- Evolving detector & services (reference, EIC-driven, RDO)
- Realistic off-axis optics

1.5 kw chiller power at -40 C unistat sa LV and HV mainframe lies Custom shell & Standard CFRP laminate foils Executive

Integration

Optimization: Tolerances

Continue PID coverage

Maintenance at IP6 (no vacuum break):

dRICH split model

Inner bore compatibility with beam pipe

EIC Project R&D - DAC Meeting - 28th August 2024

2024:

✓ Preliminary definition of the technical specifications of all the dRICH components (April '24);

Complete mechanical design of the dRICH structure (June '24);
 to be completed with interference and maintenance considerations

✓ Integration of the readout and optical component developments in a real-scale prototype (October '24)

2025:

Real scale prototype completion & performance assessment

Aeorgel mass production specifications

SiPM thermal treatment protocols & on-board implementation

eRD102

INFN in-kind plus PED as anticipated at the 2023 PID review

eRD012: FY25 goal complete the R&D with the validation of real-scale prototype and realistic component demonstrators

	prototype	aerogel	gas	mirror	photodetector	personnel	travel	total
$FY25^*$	15				20	75	10	120
	component assembling				PDE advanced	Post-doc and Tech. co-fund	Test-beam	

Milestone: Validation of dRICH production readiness with the real-scale prototype and realistic component demonstrators (July '25).

The goal is to to complete eRD102 with the realization and test of the real-scale prototype that should incorporate all the ongoing developments. To achieve a test with beam, we targeted June 2025 as realistic due to the anticipated CERN spring beam schedule.

P6: eRD102 (dRICH)

* Validate production readiness of a dual Ring-Imaging Cherenkov Detector as matched with photosensors, readout electronics, and integrated cooling on the ion-side end cap of the EIC detector, including validation by prototypes that the EIC requirements can be met [March 2025]

Backup

Streaming Data-Acquisition

Goals: Maximise modularity (detector shaping) and capability (data stream)

Gas Radiator

Gas characterizaiton & optimization (synergy with AMBER/CERN)

Deuterium UV lamp, Monochromator system, 1.6 m column for gas transparency measurement

Program towards TDR:

- ✓ 2024: Validated with prototype
- ✓ 2024: Transparency in UV
- ✓ 2025: Transparency in visible & near-UV
- ✓ 2025: gas system project

Aerogel Radiator

Aerogel characterization & optimization (synergy with ALICE3)

ePIC simulations

Program towards TDR:
✓ 2024: Validate n > 1.025
✓ 2024: Increase size (15-18 cm) or thickness (2-3 cm)
✓ 2025: define size (up to 20 cm) & production specs

Performance

dRICH performance is studied within the ePIC simulation framework (with tracking resolution and magnetic bending) An initiative has started to study impact on physics of ePIC PID subsystems

