
dRICH Collaboration

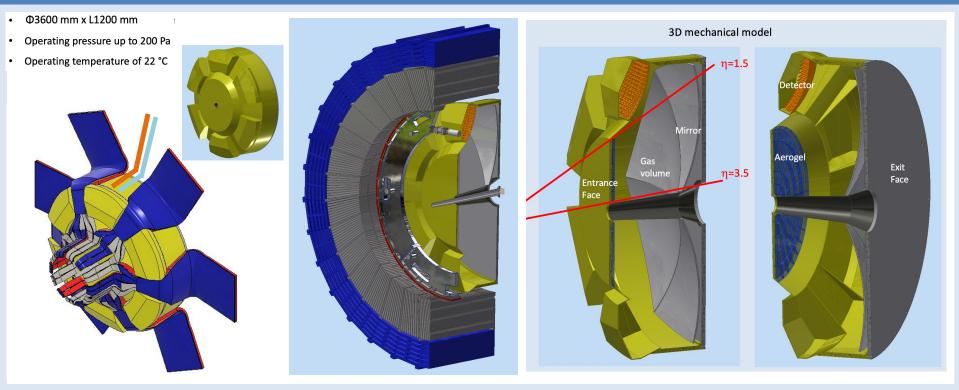
Compact cost-effective solution for particle identification in the high-energy endcap at EIC

Forward particle detection

Hadron ID in the extended 3-50 GeV/c interval

Support electron ID up to 15 GeV/c

Main challenges:

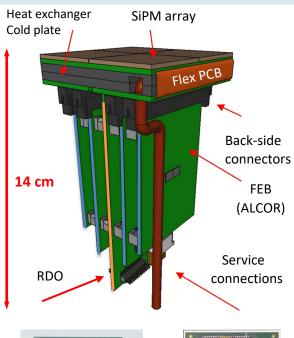

Cover wide momentum range 3 - 50 GeV/c	-> dual radiator
Work in high (~ 1T) magnetic field	-> SiPM
Fit in a quite limited (for a gas RICH) space	-> curved detector

dRICH Sub-System Organization

6.10.04 Particle Ident	ification Level-3	CAM from Project										
-												
6.10.04.03 dRICH	Level-4	CAM from Project + DSTC from EPIC (M. Contalbrigo)										
		Possible work packages not yet active										
Photo-Detector	Level-5	R. Preghenella, INFN-BO, INFN-FE, INFN-CS, INFN-SA, INFN-CT, INFN-TS, NISER										
Front-end Asics	Level-5	F. Cossio, INFN-TO, INFN-BO	Detector box	Level-5								
Data-acquisition	Level-5	P. Antonioli, INFN-BO, INFN-FE	Gas purging	Level-5								
Mechanics	Level-5	A. Saputi, INFN-FE, INFN-CT, INFN-TS, JLAB, BNL	Cooling	Level-5								
Gas radiator	Level-5	F. Tessarotto, INFN-TS, BNL	Slow Control	Level-5								
Mirror	Level-5	A. Vossen, DUKE, JLAB, NFN-FE, RICH Consortium	Interlock	Level-5								
Aerogel Radiator	Level-5	G. Volpe, INFN-BA, INFN-FE, RICH Consortium	Alignment	Level-5								
High-Pressure	Level-5	S. Dalla Torre, INFN-TS, INFN-FE, INFN-LNS	Power Supply	Level-5								
Simulation		C. Chatterjee , INFN-TS, DUKE, INFN-FE, RICH Consort.		Level-5								

M. Contalbrigo

ePIC dRICH


Acceptance: defined by pipe and barrel ecal minimize material budget with the use of composite materials

Interferences: material budget concentrated beheind the barrel ecal and its support ring readout electronics design in order to minimize the detector box volume

Moving from R&D ('25 & '26, EU based with eRD102/eRD109 support) to construction phase

	INFN	Shared	DOE
Mechanics	Detector box (FE, LNS)	Vessel (FE, LNS) Insulation (TS)	Aerogel & mirror supports (JLab) Installation tools (JLab/BNL
Photo-detector	Sensors (BO,CS,SA,CT,TS) PDU (cool plate) (BO)		
Readout	ALCOR (TO) FEB (TO) Master Panel (FE)		
DAQ	RDO (BO)	Data stream (GE, RM1, RM2)	DAM (BNL)
Radiators	Aerogel (BA)		Gas (BNL) Aerogel QA (Temple, BNL)
Mirror			Mirror (JLab/Duke) Coating (Duke)
Services			Gas Plant (BNL) Cooling Plant (BNL) Power Plant (BNL)
Monitors	Gas monitor (TS)	Slow Control/Interlock LED+Laser	

dRICH Photo-Detector

SiPM array

ALCOR chip

Photon Detector Unit (PDU):

Compact to minimize space

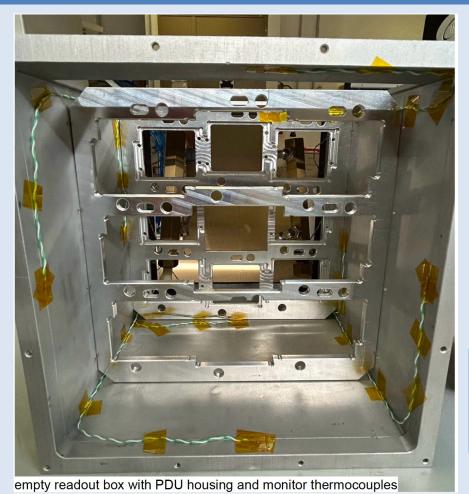
- 4x Hamamatsu S13361-3050HS SiPM arrays
- 4x Front-End Boards (FEB)
 - 4x ALCOR chip (ToT discrimination)
 - 4 x Annealing Circuitry
- 1x Read-Out Board (RDO)
 - 1x Cooling plate (< -30 C)

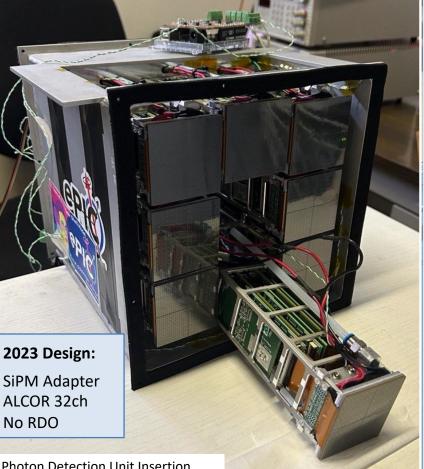
Active area is shaped to resemble the focal surface and best exploits the focalization

Detector box:

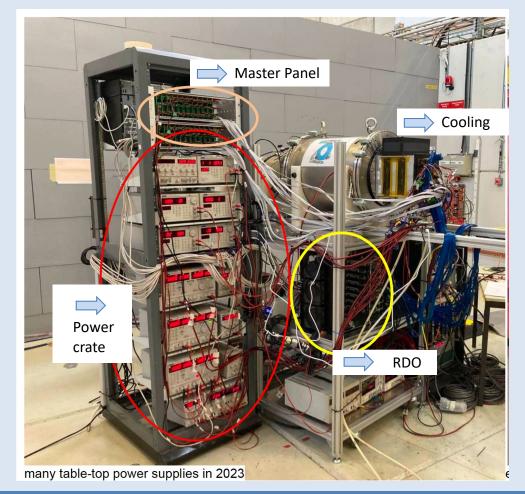
Shaped to fit the space

Quartz window


Cooling for sensors and electronics


Power distributing patch panel

Heat insulation



Detector Prototype

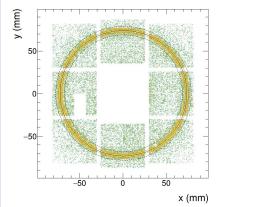
Readout & Services

Successful campaign:

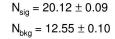
Mixed hadron beam 2-11 GeV/c

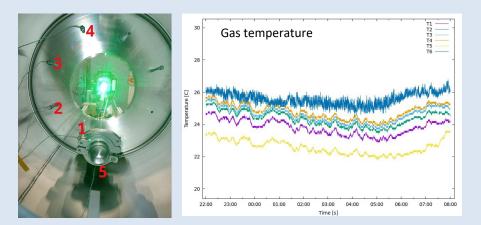
Various aerogel samples (1.020-1.026)

Two gas radiators (C_2F_6, C_4F_{10})


Two SiPM working points (-40 C and -20 C)

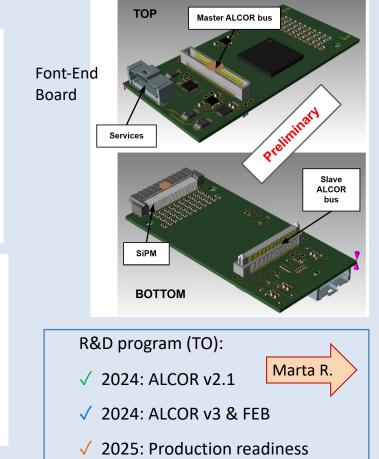
Two tracking systems (GEM & SciFi)


Many optical fiters

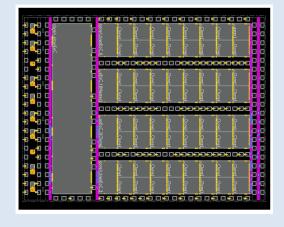

Beam line Cherenkov tagging

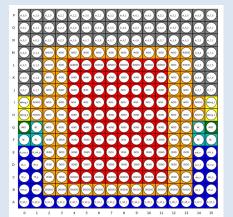
Temperature monitor

$$\begin{split} X_0 &= 0.72 \pm 0.01 \text{ mm} \\ Y_0 &= 0.50 \pm 0.01 \text{ mm} \\ R &= 73.42 \pm 0.01 \text{ mm} \\ \sigma_R &= 1.68 \pm 0.01 \text{ mm} \end{split}$$



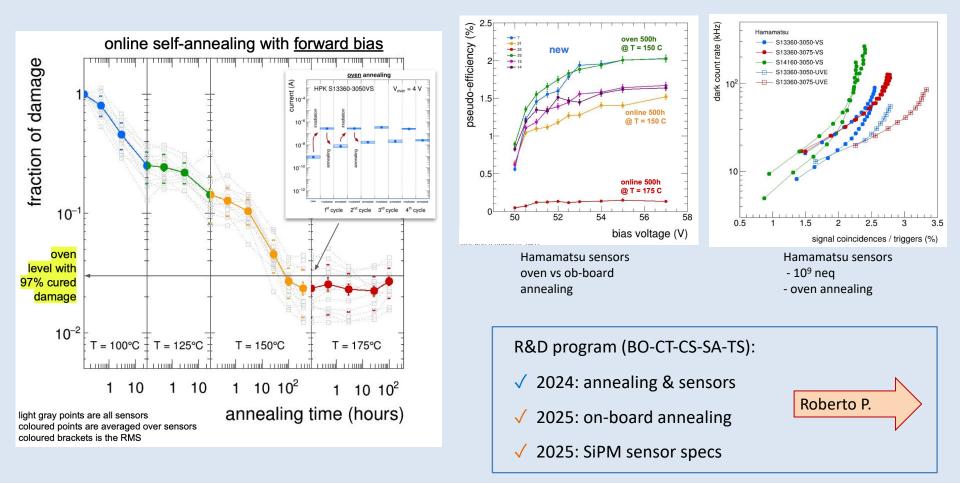
ALCOR v3


S13360-3050, OV=3V


Improvements

610.0

ALCORv64 digitazing chip



1e-7

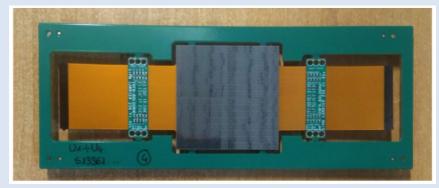
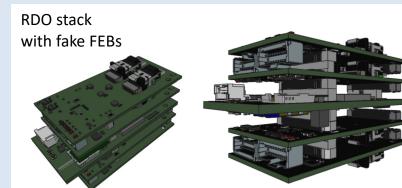
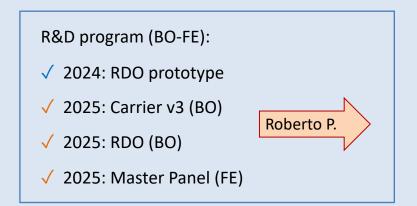

Timestamp [s]

Photo Sensors

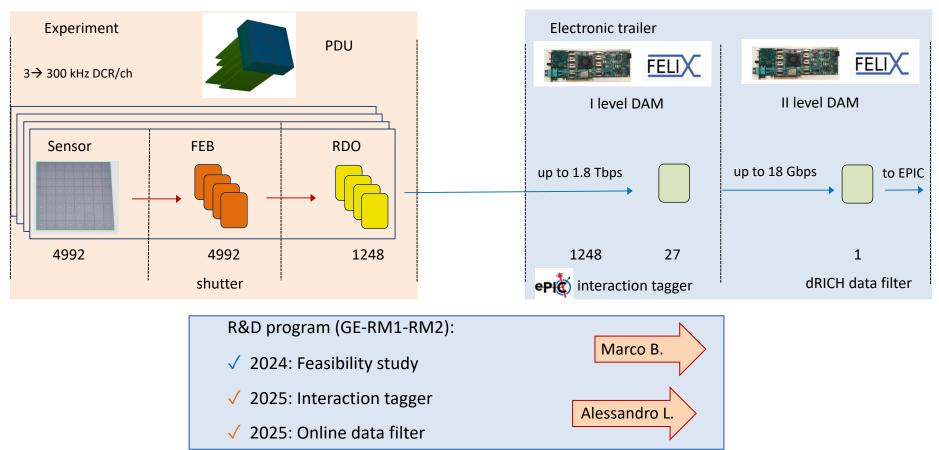


Readout Components

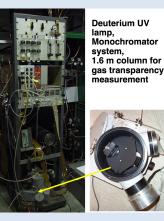
SiPM carrier board with 256 channels and flex connector circuits.



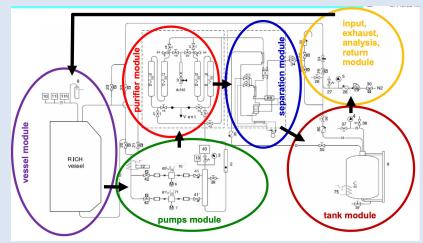
Readout Board to configure and connet to the back-end

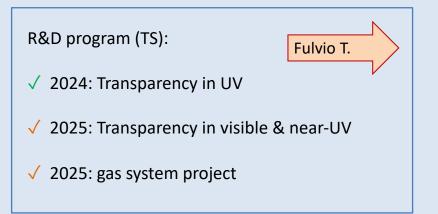

MasterLogic card to control SiPM bias voltage & monitoring service

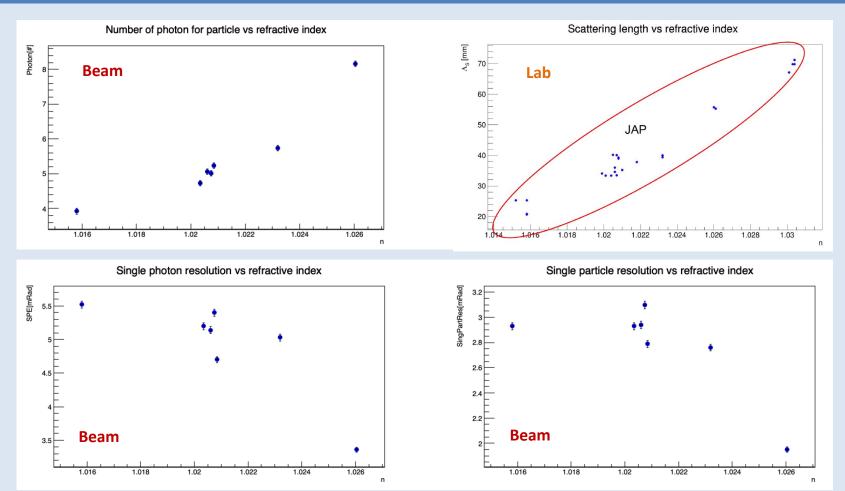
Streaming Data-Acquisition


Goals: Maximise modularity (detector shaping) and capability (data stream)

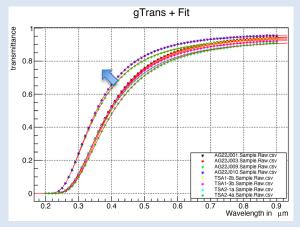
Gas Radiator




Gas characterizaiton & optimization (synergy with AMBER/CERN)

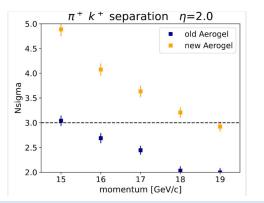

1.00-0.90-0.80-0.70-0.70-0.70-0.50-0.50-0.50-0.50-0.20-0.20-0.20-0.10-0.10-0.10-0.10-0.10-0.20-0

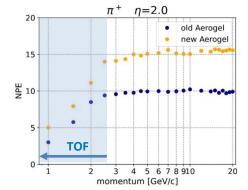
wavelength (nm)


Aerogel Radiator

Aerogel Radiator

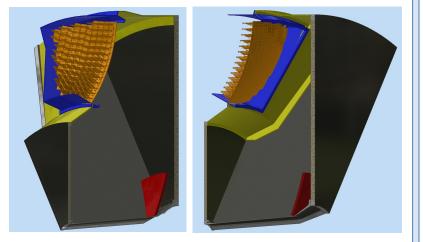
Aerogel characterization & optimization (synergy with ALICE3)





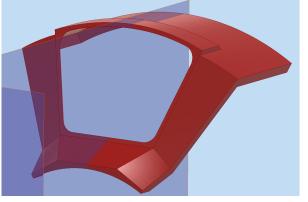
BA: lab (+new) space & tech. support

ePIC simulations


R&D program (BA):


- ✓ 2024: Validate n > 1.025
- ✓ 2024: Increase size (up to 18 cm) or thickness (up to 3 cm)
- ✓ 2025: Increase size (up to 20 cm) production specs 40 keu QA station 4 keu

Vessel


R&D program (FE):

- ✓ 2024: Real scale prototype
- ✓ 2025: Inner structure & support 11 keu
- ✓ 2025: Detector box & services 34 keu

Custom shell & Standard foils

2025 Requests

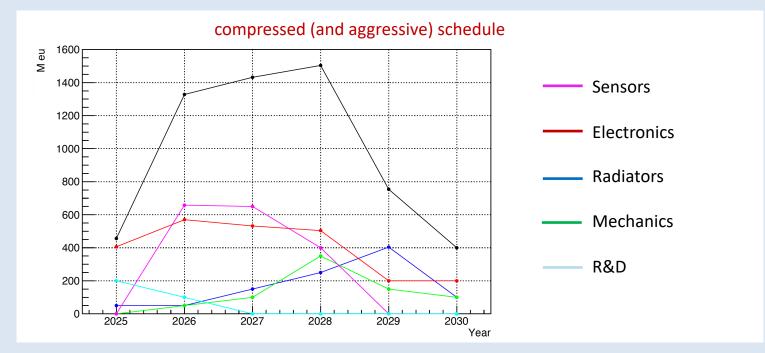
Struttura Su dot.		missioni		consumo altri_cons		seminari	tras	porti	pubblicazioni	manutenzione		inventario		apparati		licenze-SW		spservizi		Tota	ali		
Struttura	50 UOL.		Sj		Sj		Sj	Sj		Sj	Sj		Sj		Sj		Sj		Sj		Sj		Sj
BA		26	2.5	80.5					2		Aerogel 44											108.5	2.5
BO		24	15.5	49	10				Sif	PM 3	0 RDO 40	– PDI	U 30	47.5				1			7.5	121.5	33
CS		21.5	2	9							SiPM 9											30.5	2
СТ		11	7	1																		12	7
FE		16.5	6	19	11				2		Proto 43			13								50.5	17
GE		14		15							Tagger 15											29	0
LNS		21	8.5							3	Proto 8							5				26	11.5
PD		12	2.5	14.5					3					6	20							35.5	22.5
PV	sì	13.5	2.5	3					2													18.5	2.5
ROMA1		15		2							DAQ 24			24								41	0
ROMA2		18.5		5.5		3								18.5		30						75.5	0
SA		15.5	5.5								SiPM 11			11								26.5	5.5
то		26.5	5	21						AI	LCOR 275 FE	B 16				270						317.5	5
TS		52	12.5	47						G	as 57 SiPN	И 12		39.5								138.5	12.5
Totale		287	69.5	266.5	21	3			9	3				159.5	20	300		6			7.5	1031	121

Construction funds:

- ALCOR

QA stations
SiPM
aerogel
gas

- Felix DAM


Backup

INFN Funding Profile

DOE granted the EIC dRICH R&D program (eRD102) about 150 keu/yr in the last three years

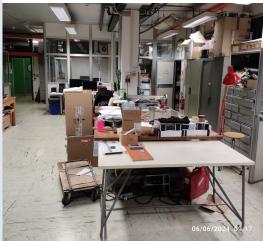
Assumptions: - 6 months delay of CD3 (now on spring 2026)

- no delay of installation (now on Oct 30: unlikely)
- possibility to split the major procurements in batches/years

INFN Engagement

BO: new space under discussion (ex Tier1) & elec. + mech. support

CS: lab (+new) space


TS: lab space & tech. support

TO: micro-electronic workshop

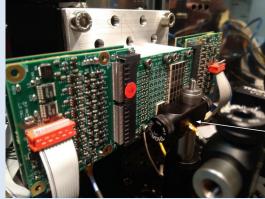
LNS & CT: tech. support

RM1 & RM2: tech support

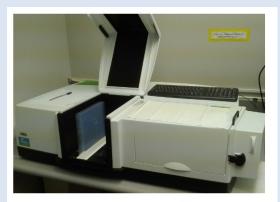
GE: lab space & electr. support

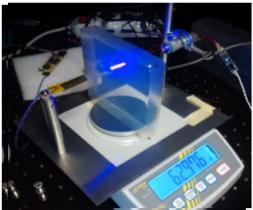
SA: lab (+new) space & tech. support

BA: lab (+new) space & tech. support



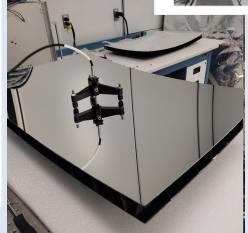
FE: lab space, clean room & elec. + mech. support


Sensors: INFN (CS/SA/CT) – TS – BO



Aerogel: Temple - BNL – INFN (BA)

Quality Assurance



Mirror: JLab – Duke – INFN (FE)

Surface Quality

