

Dual Radiator RICH @ EIC

dRICH: effective solution for ePIC detector

Two radiators: Aerogel (n_{AERO} ~1.02) + Gas (n_{C2F6} ~1.0008)

SiPM Detector: 0.5 m²/sector , 3x3 mm² pixel

Phase Space:

10

- Polar angle: 5-25 deg
- Momentum: 3-60 GeV/c

20

30

40

p (GeV/c)

100

dRICH Prototype - MAPMTs

Operative prototype commissioned. Double ring imaging achieved. Performance in line with expectations except for aerogel single-photon angular resolution (worse by a factor ~ 1.5)

Two radiator concept validation (with a reference MAPMT readout)

dRICH Prototype - SiPM

Irradiation and annealing campaign performed on various SiPM sensor from different manufacturers

hit - reference time (ns

time coincidences

Compact 256 ch unit with integrated cooling and annealing capability

Compact 256 ch unit with integrated cooling and annealing capability

Readout Box (front) Instrumented with more than 1000 channels

Readout Box (top)

Photon Detector Unit (PDU)

dRICH Prototype – EIC readout

Beam test at CERN PS-T10 beam line: October 2023

dRICH Prototype – EIC readout

Online monitors and QA plots indicate a successful beam test. Analysis is ongoing

Successful imaging with a compact EIC-driven readout plane based on SiPM + ALCOR

low temperature SiPM operation

10 GeV positive beam

Status and Plans

2022: dRICH imaging with reference detectors

Extended SiPM irradiation + annealing campaign

Cherenkov light detection with irradiated SiPM

2023: EIC-drive photon-detector plane

dRICH imaging with EIC-driven detector plane

Outlook: Refined data analysis and simulation

Final assessment