Sviluppi per identificazione di adroni con tecniche Cherenkov ad immagine

INFN R&D activity part of eRD14 - EIC PID Consortium: An integrated program for PID at a future EIC

Sharing of sensors (e.g. LAPPD), electronics, infrastructures and expertise

Access to various readout architectures (sampling vs discriminating) and novel DAQ (ethernet, streaming)

Dual Radiator RICH in EIC Hadron-endcap

dRICH: flexible configuration (JLEIC, ePHENIX)

- Radiators: Aerogel ($n_{AERO} \sim 1.02$) + Gas ($n_{C2F6} \sim 1.0008$)
- Detector: 0.5 m²/sector , 3x3 mm² pixel Single-photon detection in ~1T magnetic field Outside acceptance, reduced constraints
 - ightarrow best candidate for SiPM option

Phase Space:

- Polar angle: 5-25 deg
- Momentum: 3-60 GeV/c

dRICH Feasibility Study

Compact and cost-effective solution for continuous momentum coverage (3-60 GeV/c) Strong interest in the dRICH electron-pion separation capability

Studied with full Geant4 simulation, with Bayesian optimization and analytic parameterizations

L. Barion et al., JINST 15 (2020) 02, C02040 E. Cisbani et al., JINST 15 (2020) 05, P05009

01/September/2020

EIC_NET Meeting with INFN referees

dRICH Prototype

Baseline design ready:

being refined following

- * Yellow-report discussions
- * EIC R&D advices
- * SiPM program requirements

Procurement initiated (INFN in-kind):

- Aerogel (n=1.02, n=1.03)
- Standard vacuum components (pipes, clamps, o-rings)
- Custom flanges

Survey ongoing:

• Gas / mirrors / mechanics

01/September/2020

EIC_NET Meeting with INFN referees

dRICH Imaging

House the same principles and readout units used for mRICH test-beams Compatible with H13700/S12642 + MAROC front-end Allows to study the working principles and optical performance of the components

01/September/2020

EIC_NET Meeting with INFN referees

dRICH Key Hardware Components

Component	Function	Specs/Requirements	Critical Issues / Comments
Mechanics	Support all other components and services Keep in position and aligned	Large volume gas and light tightness; alignment of components	Technically demanding but feasible; no major challenges expected
Optics (Mirrors)	Focus (expecially for gas) and deflect photons out of particle acceptance and reduce sensor surface	sub-mrad precision reflectivity ≥ 90% low material budget	Spherical mirrors technology of CLAS12 suitable (optical fiber and/or glass skin); similar geometry; Development for cost reduction
Aerogel Radiator	Cover Low Mom. Range between TOF and Gas	≥3σ π-K separation up to Gas region (~13 GeV)	Procurement: currently 1 active provider (2 main producers + 1 potential) Long term stability assessment in conjunction with gas
Gas Radiator	Cover High Mom. Range above Aerogel	≥3σ π-K separation up to ~50 GeV and overlap to aerogel	Greenhouse gas: potential procurement issue Search for alternatives
Photon Detector	Single photon spatial detection	Magnetic field tolerant and radiation hardness; ~ few mm spatial resolution	MCP-PMT is likely doable, but expensive. LAPPD may represent an alternative. R&D on SiPM: a promising, quicky improving, wordwide pursued, and cheap technology.
Electronics	Amplify and shape single photon analog signal, convert to digital, transfer to DAQ nodes	Low noise Time res. ~ 0.5 ns µs signal latency	MAROC3 based readout available for prototyping; final choice will depend on sensor. ASIC development for optimised streaming readout (discrimination vs sampling)

dRICH Detector Environment

dRICH sensor location relaxes requirements on neutron dose tolerance and material budget

Magnetic Field

~ 1 T

order of magnitude, varying orientation

SiPM: PET study up to 7 T 10.1109/NSSMIC.2008.4774097

Neutron Fluence

~ 10 ¹¹ n_{eq}/cm²

reference value for several years at max lumi (10³⁴)

SiPM: radiation mitigation for SPE actively studied till 10¹¹ n_{eq}/cm² and above 10.1016/j.nima.2019.01.013 10.1016/j.nima.2018.10.191

SiPM SPE capability under study since 2012 @ INFN

Contalbrigo++ NIMA 766 (2014) 22, Balossino ++ NIMA876 (2017) 89

01/September/2020

SiPM & Electronics

SiPM board*: 4 SiPM samples for each vendor, type and dose mounted as 8 x 4 matrices for tests & imaging; compatible with irradiations, annealing cycles and laboratory characterization

(Adapter board*: bias distributors and signal pre-conditioning)

ALCOR board*: ALCOR chip + firefly DAQ

* Customized

 ALCOR chip: under development at INFN (DARKSIDE) ToT architecture for cryogenic application 32 channels, 50 ps TDC, >500 kHz/channel
 Firefly DAQ: derived from ARCADIA INFN GR5 project

Conclusions

Activity plan in line with the EIC R&D Committee recommendations for TDR readiness in 2023

To address crucial PID aspects at EIC synergic with other R&D programs (gaseous RICH, electronics, sensors):

cost-effective compact solution for hadron PID in the forward region in a wide kinematic range in 1 year: baseline prototype completion and first test-beam

investigation of novel single-photon detector solution to be operated in high magnetic field in 1 year: post-irradiation characterization and imaging of a status-of-the-art SiPM selection

Fund request: EIC R&D (personnel) INFN (Prototype baseline configuration completion) INFN (SiPM sensors/electronics/tests)

~ 80 k\$ 11 keuro (FE) 29 keuro (BO+FE)

Proposal to INFN: anticipate a substantial fraction this year (new program, more groups) '20 & '21 shared investment for 7 already active groups (Bo/Ct/Fe/LNF/Rm1/To/Ts) with a clear goal

Goal: have in ~1 year a full-chain assessment of the most innovative aspects/technology in preparation of the "Call for Detectors" expected in FY2021 (thanks to the past experience, the broad interest and the increased manpower/expertise)

Plan for TDR Readiness

Reviewed by the EIC R&D Committee in September 2019

2020	2021	2022	2023
	Basic prototype	Refined prototype	TDR readiness
Prototype design, simulation and implementation	 basic tracking 1 radiator choice commercial mirror 	 precision tracking / alignmen various radiators custom mirrors 	EIC configuration engineering, realistic PID
Basic mechanics Electronics	- reference readout Beam Test 1	 gas system optimized readout online reconstruction 	Contingency: Beam test 3
adaptation	- MA-PMTs, SiPMs - Proton beam	Beam Test 2	 Performance assessment Component optimization
Component test and selection	- Critical aspects Optical components test and selection	 MCP-PMTs, SiPMs Hadron beam Performance optimization 	Optical components refinement and cost reduction study (e.g. glass-skin mirror)
Start of INFN in-kind funds	SiPM program	Optical components test and selection	SiPM program Custom SiPM selection
SiPM program start	radiation tolerance and cooling program	SiPM program ALCOR v2	
01/September/2020	EIC N	NET Meeting with INFN referees	10

2021 Funding Plan

