

Università degli Studi di Ferrara

Dipartimento di Fisica e Scienze della Terra

Geoneutrinos from Potassium in the Earth

Advisor: Prof. Fabio Mantovani

Co-Advisor: Dott.sa Marica Baldoncini Dott.sa Virginia Strati Graduating: Andrea Serafini

Academic Year 2017-2018

Outline

- Earth formation and evolution: open questions
- A probe to investigate Earth interior: geoneutrinos
- ⁴⁰K geoneutrino detection: challenges and strategies
- Study of target nuclei for ⁴⁰K geoneutrino detection through Inverse Beta Decay (IBD)
- Estimation of ⁴⁰K geoneutrino signal

Scientific motivations

- **Earth** is mainly **inaccessible**: we cannot directly access its interior. What we actually know comes from:
- seismological reconstruction of density profile and geophysical features throughout all Earth
- rock samples from the Crust (and the upper portion of the Mantle), useful for geochemical analysis.

Typically, assumptions on which **building blocks** have been used to form our planet Earth in the beginning are inferred from meteorites:

Enstatites Chondrites

Carbonaceous Chondrites

These are characterized by completely different elemental abundances.

Knowing Earth composition would permit to better understand the processes that lead our planet to be what it is now.

1st differentiation Primitive Mantle (PM) [~68%] Outer Core (OC) [~31%] Inner Core (IC) [~1%]

Siderophile elements (+Fe) in the Core

1st differentiation Primitive Mantle (PM) [~68%] Outer Core (OC) [~31%] Inner Core (IC) [~1%]

2nd differentiation

Lithosphere [~2%]

Mantle [~66%]

OC+IC [~32%]

Siderophile elements (+Fe) in the Core

Lithophile elements (+O) in the Lithosphere (e.g. U, Th, K)

1st differentiation Primitive Mantle (PM) [~68%] Outer Core (OC) [~31%] Inner Core (IC) [~1%]

Siderophile elements (+Fe) in the Core

Lithophile elements (+O) in the Lithosphere (e.g. U, Th, K)

2nd differentiation Lithosphere [~2%] Mantle [~66%] OC+IC [~32%]

Convective and tectonic processes: formation of new crust (oceanic crust) and recycling of continental crust (up to 10 times)

A Standard Model of the Earth

Earth has a well established layered structure, visible from its density profile:

A Standard Model of the Earth

Earth has a well established layered structure, visible from its density profile:

Bulk Earth's mass composition		
Iron (Fe)	32%	
Oxygen (O)	30%	
Silicon (Si)	16%	
Magnesium (Mg)	15%	

About 0.02% of Earth's mass is made out of radioactive **Heat Producing Elements (HPEs).** The most important for activity, abundances and half-life time (comparable to Earth's age) are:

- Uranium U (~10⁻⁸ M_{Earth})
- Thorium Th (~10⁻⁷ M_{Earth})
- Potassium K (~10⁻⁴ M_{Earth})

The main reservoirs of the Earth

Despite Earth's structure is well understood, its chemical composition is not. Only for Lithosphere a coherent statistical study can be performed on samples.

Bulk Silicate Earth (BSE) Models

The Primitive Mantle's composition is described by the paradigm of the BSE. Among the several models proposed, these are the ones predicting the **minimum**, the **standard** and the **maximum** values for HPEs' masses

Cosmochemical Model (CCM)

- Enstatitic composition
- Low HPEs content

- Carbonaceous composition
- Medium HPEs content

- Geodynamical Model (GDM)
- Based on Earth dynamics
- High HPEs content

	ССМ	GCM	GDM
M(U) [10 ¹⁶ kg]	4.8	8.1	14.1
M(Th) [10 ¹⁶ kg]	17.4	32.3	56.5
M(K) [10 ¹⁹ kg]	58.9	113.0	141.2

The typical uncertainties of individual models are typically ~20%, of second order compared to a factor ~3 variability among models.

Earth scenarios for geoneutrinos

- Not only HPEs' content, but also their distribution inside the Earth is not fully known.
- Taking into account geophysical, geochemical and cosmochemical constraints, we built three (Low, Standard and High) scenarios which embrace the maximum HPE's contents variability.

Geoneutrinos: main physical properties

- Geoneutrinos are v
 _e produced in naturally occurring β⁻ decays of HPEs in the Earth.
- $\varepsilon(\overline{v})$ provides the \overline{v}_e production rate for kg of the HPE.
- They can cross the entire planet **almost without interacting**, bringing instantaneous information on the Earth's composition.
- Geo-v
 _e from ⁴⁰K could represent an important tool thanks to their higher luminosity.

Decay	T _{1/2} [10 ⁹ y]	ε(ν̄) [10 ⁷ kg ⁻¹ s ⁻¹]	E _{max} ($\bar{ u}$) [MeV]
$^{238}U \rightarrow ^{206}Pb + 8\alpha + 6\beta^{-}$	4.47	7.5	3.36
$^{232}\text{Th} \rightarrow ^{208}\text{Pb} + 6\alpha + 4\beta^{-}$	14.0	1.6	2.25
${}^{40}\text{K} \rightarrow {}^{40}\text{Ca} + \text{e}^{-} + \bar{\nu}_{e}$ (89%)	1.28	23.2	1.31

Inverse Beta Decay (IBD) detection

Inverse Beta Decay (IBD) detection

ve

 $\bar{\nu}_e + p \rightarrow n + e^+ - 1.806 \text{ MeV}$

Detection requires the coincidence of 2 delayed light signals.

It does not permit to observe ${}^{40}\mathrm{K}\mathchar`- \bar{\nu}_e$

In order to detect ${}^{40}\text{K}$ - $\bar{\nu}_e$ we could use:

$$\bar{\nu}_e + {}_{Z+1}^A Y \to {}_Z^A X + e^+ - \mathsf{E}_{\mathsf{th}}$$

We shall require:

- E_{th} < 1.3 MeV
- High cross-section
- High Y natural isotopic abundance

Geoneutrino signal ingredients

The geoneutrino signal evaluation requires several ingredients for modeling the three geoneutrino life stages:

- production inside the Earth
- propagation to the detector site
- detection in liquid scintillation detectors

 $S_{i,n} \propto Sp_i(E) \otimes \Phi_i(m, \vec{r}) \otimes P_{ee}(E, \vec{r}) \otimes \sigma_n(E) \otimes N_{target,n} \otimes T$

2

- $Sp_i(E) = \overline{v}_e$ emission spectra Nuclear where *i* = ²³⁸U, ²³²Th, ⁴⁰K
 - $N_{target, n}$ = number of target nuclei where *n* runs over the IBD target candidates
 - T =acquisition time

Detector

- $\Phi_i(m_i, \vec{r})$ = unoscillated $\bar{\nu}$ flux at Geology surface, where m_i is the mass of the *i-th* HPE placed at a distance \vec{r} from the detector
- $P_{ee}(E, \vec{r}) = \bar{\nu}_e$ survival probability phisics • $<P_{ee}> = 0.55$ for $|\vec{r}|>50$ km
 - $\sigma_n(E) = IBD$ cross-section on
 - nucleus target n

IBD Cross-sections

$$\sigma(E) = \frac{G_F^2}{\pi} \cos^2 \theta_C \left| M_{fi} \right|^2 p E F(Z, E) \qquad \begin{pmatrix} c = \\ \hbar = \end{pmatrix}$$

- G_F = Fermi constant
- $\theta_{\rm C}$ = 13.02° Cabibbo angle Nuclear Physics $\left|M_{fi}\right|^2$ = Squared Matrix element $\propto \frac{1}{ft}$
 - ft = Comparative half-life
 - F(Z,E) = Fermi nuclear function

 $p = \overline{v}_e$ momentum

• $E = \overline{v}_e$ energy

 \bar{v}_e Kinematics

After a first steep rise dominated by the Fermi Function F(Z,E) the cross-section increases as:

 $\sigma_n(E) \propto E^2$

Different nuclei differ only for:

- E_{th} energy threshold
- F(Z,E) Fermi Function

	Ζ	Isotopic abundance	E _{th} [<i>MeV</i>]	log ft
¹ Η	1	0.9999	1.806	3.0
³ He	2	1.34 x 10⁻ ⁶	1.041	3.1
¹⁴ N	7	0.9964	1.178	9.0
³⁵ Cl	17	0.7576	1.189	5.0
⁶³ Cu	29	0.6915	1.089	6.7
⁷⁹ Br	35	0.5069	1.268	4.7
¹⁰⁶ Cd	48	0.0125	1.212	4.5

- For ³He and ¹⁰⁶Cd, **isotopic abundances** precludes the construction of a *kton* detector
- ⁷⁹Br has a small energy window below the Potassium endpoint
- ¹⁴N and ⁶³Cu have **high ft values** \rightarrow Low cross-section

	Ζ	Isotopic abundance	E _{th} [<i>MeV</i>]	log ft
ΊΗ	1	0.9999	1.806	3.0
³ He	2	1.34 x 10⁻ ⁶	1.041	3.1
¹⁴ N	7	0.9964	1.178	9.0
³⁵ Cl	17	0.7576	1.189	5.0
⁶³ Cu	29	0.6915	1.089	6.7
⁷⁹ Br	35	0.5069	1.268	4.7
¹⁰⁶ Cd	48	0.0125	1.212	4.5

- For ³He and ¹⁰⁶Cd, **isotopic abundances** precludes the construction of a *kton* detector
- ⁷⁹Br has a small energy window below the Potassium endpoint
- ¹⁴N and ⁶³Cu have **high ft values** \rightarrow Low cross-section

	Ζ	Isotopic abundance	E _{th} [<i>MeV</i>]	log ft
¹ Η	1	0.9999	1.806	3.0
³ He	2	1.34 x 10⁻ ⁶	1.041	3.1
¹⁴ N	7	0.9964	1.178	9.0
³⁵ Cl	17	0.7576	1.189	5.0
⁶³ Cu	29	0.6915	1.089	6.7
⁷⁹ Br	35	0.5069	1.268	4.7
¹⁰⁶ Cd	48	0.0125	1.212	4.5

- For ³He and ¹⁰⁶Cd, **isotopic abundances** precludes the construction of a *kton* detector
- ⁷⁹Br has a small energy window below the Potassium endpoint
- ¹⁴N and ⁶³Cu have **high ft values** → Low cross-section

	Ζ	Isotopic abundance	E _{th} [<i>MeV</i>]	log ft
¹ Η	1	0.9999	1.806	3.0
³ He	2	1.34 x 10⁻ ⁶	1.041	3.1
¹⁴ N	7	0.9964	1.178	9.0
³⁵ Cl	17	0.7576	1.189	5.0
⁶³ Cu	29	0.6915	1.089	6.7
⁷⁹ Br	35	0.5069	1.268	4.7
¹⁰⁶ Cd	48	0.0125	1.212	4.5

- For ³He and ¹⁰⁶Cd, **isotopic abundances** precludes the construction of a *kton* detector
- ⁷⁹Br has a small energy window below the Potassium endpoint
- ¹⁴N and ⁶³Cu have **high ft values** \rightarrow Low cross-section

IBD Cross-sections

- Cross-sections for IBD on single target isotope in [cm²]
- Estimated cross sections values span over 6 orders of magnitude.
- The lowest threshold is 1.041 MeV for ³He, the highest is 1.268 MeV for ⁷⁹Br

• Weighted IBD Cross-sections

- ³He, which seemed the perfect candidate, is disfavored by its **abundance**
- ⁷⁹Br has a 1.268 MeV threshold, just 43 keV below the ⁴⁰K endpoint
- ³⁵CI has both a low threshold and a good weighted cross-section

Geoneutrino Signals

$$S_{i,n}(\vec{r}) = \frac{N_{target,n} \cdot T}{M_i \cdot \tau_i} \cdot \iint \frac{a_i(\vec{r}') \cdot \rho(\vec{r}')}{4\pi |\vec{r} - \vec{r}'|^2} \cdot P_{ee}(|\vec{r} - \vec{r}'|, E_{\nu}) \cdot Sp_i(E_{\nu}) \cdot \sigma_n(E_{\nu}) \, d^3r' \, dE_{\nu}$$

$$n = {}^{1}H, {}^{3}He, {}^{14}N, {}^{35}Cl, {}^{63}Cu, {}^{79}Br, {}^{106}Cd$$

 $i = {}^{238}$ U, 232 Th, 40 K

	정 분락 성업 방법 한 것 같은 것
N _{target,n}	$10^{32} \cdot C_n$ with C_n isotopic ab.
Т	1 year
M _i	Mass of i-th HPE atom
$ au_i$	Mean lifetime of i-th HPE
$a_i(\vec{r}')$	Abundance of <i>i</i> in \vec{r}'
$ ho(ec{r}')$	Earth density
$P_{ee}(\vec{r}-\vec{r}' ,E_{\nu})$	Survival probability for \bar{v}_e
$Sp_i(E_{\nu})$	$\bar{\nu}_e$ energy spectra for i-th HPE
$\sigma_n(E_{\nu})$	IBD cross-section on atom n

Geoneutrinos signals were evaluated at:

- Kamioka
- Gran Sasso
- Himalaya
- Hawaii

Signals and isotopes' hierarchy

- For each site a signal variability range was estimated according to the Low, Standard and High Scenarios. $S_{ref} [S_{low}, S_{high}]$.
- Signal are expressed in TNU: events per 10³² targets per year

	S(⁴⁰ K) [TNU]		
	Gran Sasso Kamioka		
³⁵ Cl	0.094 [0.061, 0.124]	0.070 [0.042, 0.092]	
⁶³ Cu	4.40 [2.84, 5.80]× 10⁻³	3.30 [1.99, 4.34]× <i>10</i> -3	
⁷⁹ Br	2.58 [1.66, 3.39]× <i>10</i> ⁻³	1.93 [1.16, 2.54]× <i>10</i> ⁻³	
¹⁰⁶ Cd	6.38 [4.12, 8.41]× <i>10⁻</i> 4	4.78 [2.88, 6.30]× 10⁻⁴	
³ He	1.58 [1.02, 2.08]× <i>10</i> -4	1.18 [0.71, 1.56]× <i>10</i> ⁻⁴	
¹⁴ N	2.28 [1.47, 3.01]× <i>10</i> ⁻⁵	1.71 [1.03, 2.25]× <i>10</i> -5	

- To compare with S(U+Th)~10¹ TNU on ¹H
- ³⁵Cl is the best candidate for ⁴⁰K geo- $\bar{\nu}_e$ detection.
- The signal variability among the different scenarios is of a factor ~2

⁴⁰K Geoneutrino Signals at 4 sites

Hawaii has the lowest signal, with 83% coming from the Mantle.

Kamioka and Gran Sasso show comparable overall signals.

Himalaya has the highest signal, with 80% coming from the Lithosphere.

Conclusions and Perspectives

- Three Earth scenarios have been studied to predict the expected geo- \bar{v}_e signal at surface, accounting for the variability of HPEs masses and distributions presented by different BSE models.
- Potassium $\bar{\nu}_e$ remains undetected. A list of **six candidate isotopes** (³He,¹⁴N,³⁵Cl,⁶³Cu,⁷⁹Br,¹⁰⁶Cd) suitable for ⁴⁰K- $\bar{\nu}_e$ **IBD detection** has been found.
- IBD cross section has been calculated for each isotope candidate, with ³⁵Cl resulting the best option in terms of expected signal.
- Expected $\overline{\nu}_e$ signals have been evaluated at 4 different sites on Earth, for each IBD isotope candidate.

Conclusions and Perspectives

- Three Earth scenarios have been studied to predict the expected geo- \bar{v}_e signal at surface, accounting for the variability of HPEs masses and distributions presented by different BSE models.
- Potassium $\bar{\nu}_e$ remains undetected. A list of **six candidate isotopes** (³He,¹⁴N,³⁵Cl,⁶³Cu,⁷⁹Br,¹⁰⁶Cd) suitable for ⁴⁰K- $\bar{\nu}_e$ **IBD detection** has been found.
- IBD cross section has been calculated for each isotope candidate, with ³⁵CI resulting the **best option** in terms of expected signal.
- Expected $\overline{\nu}_e$ signals have been evaluated at 4 different sites on Earth, for each IBD isotope candidate.
- Next steps:
- Study physical and geological uncertainties to provide a second order correction to these results.
- Evaluate the cost associated with each isotope to study the feasibility of a detector.

THAN⁴⁰KS FOR YOUR ATTENTION

BACK UP

Survival Probability

$$|v_i\rangle = \sum_{\alpha=e,\mu,\tau} U_{\alpha,i} |v_{\alpha}\rangle$$

Pontecorvo-Maki-Nakagawa-Sakata matrix

	Best fit	1σ range
δm^2	7.34 × 10 ⁻⁵ eV ²	[7.20 – 7.51] × 10 ⁻⁵ eV ²
$sin^2\theta_{12}$	3.04 × 10 ⁻¹	[2.91 – 3.18] × 10 ⁻¹
$sin^2\theta_{13}$	2.14 × 10 ⁻²	[2.07 – 2.23] × 10 ⁻²
$ \Delta m^2 $	2.455 × 10 ⁻³ eV ²	[2.423 – 2.490] × 10 ⁻³ eV ²
$sin^2\theta_{23}$	5.51 × 10 ⁻¹	[4.81 – 5.70] × 10 ⁻¹
δ	1.32 π	[1.14 π – 1.55 π]

$$P_{e \to e}(E,L) \sim \cos^4\theta_{13} \left(1 - \sin^2 2\theta_{12} \sin^2 \left(\frac{\delta m^2 L}{4E} \right) \right) + \sin^4\theta_{13}$$

Fermi Function

$$F(Z, E, R) = \frac{|\phi_e(R)_{Coulomb}|^2}{|\phi_e(R)_{Free}|^2} = 2(1+\gamma)(2pR)^{2\gamma-2}e^{\pi\eta} \left|\frac{\Gamma(\gamma+i\eta)}{\Gamma(2\gamma+1)}\right|^2$$

Flux Variability

Geo-Dynamo

