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Abstract. We review the geoneutrino measurement with Borexino from 2056 days of data
taking.

1. Borexino and Geoneutrinos
Borexino is an unsegmented massive liquid scintillator detector installed in the Gran Sasso
underground Laboratory (Italy). Borexino has been collecting data since May 2007. The active
mass in Borexino consists of 280 tons of organic liquid scintillator, pseudocumene (PC; C9H12)
with the addition of PPO at 1.5 g/l [1]. The liquid scintillator is contained within a 100 μm thick
nylon transparent vessel 4.25 m in radius. 2212 8-inch photomultipliers (PMTs) are installed
on a Stainless Steel Sphere (SSS) which contains the liquid scintillator and about 900 tons of
pseudocumene buffer with the addition of a light quencher (DMP) [2]. The SSS is built inside a
water Cherenkov detector for vetoing muons and muon related events [3]. The water tank also
serves as shielding against neutrons from the underground environment. For each event inside
the active mass the energy and the time distribution of hit PMTs are measured.

Borexino is a high radio purity detector: all materials were carefully selected. A number of
purification campaigns were performed to reduce the intrinsic background, namely 238U, 232Th,
210Pb, 210Po, 222Rn and 85Kr. In Borexino calibrations [4] with radioactive sources have been
performed. These calibrations allowed to accurately determine the energy scale and to study
the uniformity of the light response [5].

Due to the high level of radio purity, Borexino is also an excellent detector for electron
anti-neutrinos. These neutrinos are detected by the so-called inverse-beta decay reaction:

ν̄e + p→ e+ + n (1)

The threshold of Eq. (1) is equal to 1.806 MeV. The neutron from the capture on hydrogen
produces a 2.22 γ-ray. In the Borexino liquid scintillator the capture time is of the order of
260 μs. The visible energy due to the ionization of the positron is related to the ν̄e energy by:
Evis = Eν − 0.784MeV. The positron produces a prompt signal. The γ-ray from the neutron
capture produces a delayed signal. The space and time correlation between the prompt and
delayed signals offers a very powerful tagging for this reaction.

Geoneutrinos are ν̄e produced by β decays of long-lived radioactive elements in the Earth’s
crust and mantle. The main sources of geoneutrinos are: 238U, 232Th and 40K. The energy
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spectrum of electron anti-neutrinos from these sources is shown in Fig. 1. Only neutrinos
from 238U and 232Th can be detected by Eq. (1). These radioactive elements are referred to
as Heat Producing Elements (HPE) because they produce an important fraction of the heat
radiated by the Earth. At present, geochemical and geodynamical models of the Earth predict
that as much as 50% of the total heat radiated by the Earth comes from HPE (radiogenic heat).
Geoneutrinos could offer the possibility to make a direct measurement of the radiogenic heat and
of the distribution of the HPE in the crust and mantle. On the basis of our understanding the
crust contains ppm level of HPE, while the mantle ppb level. However, the amount of HPE in the
mantle is model dependent and there is no direct measurement. The observation of geoneutrinos
is the method to directly measure the HPE in the mantle. The total flux of geoneutrinos from the
Earth is of the order of 106 cm−2s−1, which turns to about 50 events/kton/year. Therefore, the
measurement of geoneutrinos is difficult and could be limited by statistics. Results from more
than one experiment are needed to accurately determine the radiogenic heat and the mantle
composition in HPE.
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Figure 1. Electron anti-neutrino spectrum from 238U (solid line), 232Th (dashed-dotted line)
and 40K (dashed line). The vertical line shows the energy threshold for the inverse-beta decay
reaction.

The idea of studying geoneutrinos goes back in time to 1966-1969 [6]. In 1984 a careful
study of the geoneutrino signal was published by L.M. Krauss and collaborators [7]. In 1998 the
idea of using solar neutrino and reactor neutrino detectors, namely Borexino and KamLAND,
for detecting geoneutrinos was put forward [8]. First geoneutrino observations were done by
KamLAND [9] and Borexino [10]. The latest geoneutrino results are reported in [11] and [12].

2. High sensitivity measurement of geoneutrino in Borexino
The present measurement of geoneutrinos in Borexino corresponds to 2056 days before any
selection cut [12]. These data have been collected in the period December 15, 2007 - March 8,
2015. We discard events occurring within 2 ms of every muon crossing the outer water Cherenkov
detector and within 2 s of muons crossing the inner liquid scintillator detector to reject neutrons
and long-lived cosmogenic radioactivity, respectively. This cut reduces the live-time to 1841.9
days. For the present data set Table 1 summarizes the estimated backgrounds for ν̄e candidates,
expressed in number of events. The combined upper limit is obtained by Monte Carlo. The
detection efficiency is measured to be (84.2 ± 1.5)%. The total efficiency-corrected exposure
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for the present data set is 907±44 ton×yr. We have identified 77 ν̄e candidates passing all the
selection cuts [?]. The ν̄e signal-to-background ratio is ∼100.

Table 1. Estimated backgrounds for ν̄e given in number of events. Upper limits are given for
90% C.L.

9Li-8He 0.194+0.125
−0.089

Accidental coincidences 0.221±0.004
Time correlated 0.035+0.029

−0.028
(α,n) in scintillator 0.165±0.010
(α,n) in buffer <0.51
Fast n’s (μ in WT) <0.01
Fast n’s (μ in rock) < 0.43
untagged muons 0.12±0.01
Fission in PMTs 0.032±0.003
214Bi-214Po 0.009±0.013

Total 0.78+0.13
−0.10

< 0.65(combined)
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Figure 2. Prompt light yield spectrum, in units of photoelectrons (p.e.), of antineutrino
candidates and best-fit. The best-fit shows the total contribution of geoneutrino, reactor neutrino
and background (yellow colored area) and reactor neutrino (orange colored area) assuming the
chondritic ratio. The result of a separate fit with U (blue colored area) and Th (light-blue
colored area) set as free and independent parameters is also shown.

An unbinned likelihood fit of the energy spectrum of selected prompt ν̄e candidate
events has been performed. In Fig. 2 the selected candidates and the fit result
are shown. Using the chondritic ratio, m(Th)/m(U) = 3.9, our best fit yields
Sgeo = 23.7+6.5

−5.7(stat)
+0.9
−0.6(sys) events [43.5+11.8

−10.4(stat)
+2.7
−2.4(sys) TNU1] and Sreact =

1 1TNU=1event/year/1032protons
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52.7+8.5
−7.7(stat)

+0.7
−0.9(sys) events [96.6

+15.6
−14.2(stat)

+4.9
−5.0(sys) TNU]. In Fig. 3 we show the 1, 3 and 5σ

contours from the log-likelihood fit. Borexino alone observes geoneutrinos with 5.9σ significance
(Fig. 3). The null hypothesis for geoneutrino observation has a probability equal to 3.6× 10−9.
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Figure 3. Best-fit contours for 1, 3 and 5σ for the statistics reported in this paper.

From the present data set we can infer the signal from the mantle. Using a detailed
computation of the contribution from the crust [13] it turns out that the corresponding
geoneutrino signal is Sgeo(crust) = (23.4±2.8) TNU. The signal from Borexino is Sgeo = 43.5+12.1

−10.7
TNU. Considering the experimental likelihood profile for Sgeo and a gaussian profile for Scrust:
Smantle = Sgeo − Scrust = 20.1+15.1

10.3 TNU. The hypothesis Smantle = 0 is rejected at 98% C.L.
Understanding the Earth’s energy budget is a fundamental question for plate tectonics

and mantle convection. The present geoneutrino data from Borexino for the radiogenic heat
corresponds to 23-36 TW for the best fit. Adopting the chondritic mass ratio above and a
potassium-to-uranium mass ratio m(K)/m(U) = 104, the total measured terrestrial radiogenic
power is P (U + Th+K) = 33+28

−20 TW, to be compared with the global terrestrial power output
Ptot = 47± 2 TW [14].

In conclusion, Borexino-only data measure geoneutrinos with 5.9σ significance. The
background level in Borexino allows to perform a real time spectroscopy of geoneutrinos and
probe the contribution due to the mantle.
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