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uPhysics and Astronomy Department, University of California Los Angeles, Los Angeles, CA 90095, USA

Abstract

We present a 1353 days measurement of the geo–neutrino flux in Borexino: the signal was found to be 14.3 ± 4.4

events. This result translates into S geo = (38.8 ± 12.0) TNU when a Th/U fixed chondritic mass ratio of 3.9 is assumed.

Furthermore Borexino data are compatible with a mantle geo–neutrino signal of (15.4 ± 12.3) TNU.
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1. Introduction

The detection of neutrinos emitted by different natural sources and the study of their properties have

been fundamental since ever, not only for elementary particle physics, but also to improve the knowledge

of various astrophysical objects. One can think, for instance, of the contribution given by solar neutrino

physics to the development of Standard Solar Models [1], or consider the relevant information that Super-

nova neutrinos carry on the Supernovae explosion mechanism. Since a few years another dream of the

neutrino community [2] became true and large volume experiments like KamLAND and Borexino offered

for the first time the possibility of studying the interior of the Earth by detecting geo–neutrinos, which are

electron antineutrinos (ν̄e) released in radioactive decays inside the Earth. By measuring the geo–neutrino

flux produced mainly in β decays of 40K and several nuclides in the chains of long–lived radioactive isotopes
238U and 232Th, it is in principle possible to deduce the amount of the radiogenic heat produced within the

Earth. This information would be very important for geophysical and geochemical models. For a more

detailed discussions about the mechanism of geoneutrinos production, their energy spectra and the open

geophysical problems to which they are connected, the interested reader can see, for instance, the following

paper (and the references contained therein) [3].

Geo-neutrinos measurement from 238U and 232Th was performed by the KamLAND collaboration [4,

5, 6], and Borexino [7] using large volume liquid scintillator detectors located in underground laboratories.

Unfortunately these measurements are not able to discriminate among several geological models because of

their low statistics and/or systematic errors. As it was shown in [6] and [8], analyses combining the results

from different sites have higher prediction power; in fact, several projects which are entering in operation

(SNO+ [9]) or are in their design phase (LENA [10] and Hanohano [11]) have geo–neutrinos among their

scientific goals.

Borexino measurement of the geo–neutrino signal with 2.4 times higher exposure with respect to [7] has

been published in [12]. For the first time, Borexino attempted a measurement of the individual geo–neutrino

signals from the 238U and 232Th chains.

2. The Borexino detector and the detection principle

The Borexino detector, installed in the underground hall C of the Laboratori Nazionali del Gran Sasso

(LNGS) in the center Italy, is an unsegmented liquid scintillator detector having as main goal the spectral

measurement of low–energy solar neutrinos.

It consists of 278 tons of ultra–pure liquid scintillator (pseudocumene (PC) doped with 1.5 g/l of dipheny-

loxazole) that are confined within a thin spherical nylon vessel (thickness of about 0.1 mm) with a radius of

4.25 m.

The detector’s core is shielded from external radiation by 890 tons of buffer liquid, consisting in a

solution of PC and 3-5 g/l of dimethylphthalate as light quencher. A second nylon vessel with a 5.75 m

radius, divides the buffer in two volumes with the aim to prevent inward radon diffusion. These two nylon

vessels are contained in a stainless steel sphere (SSS) with a diameter of 13.7 m on which 2212 8” PMTs

detecting the scintillation light are mounted. An external domed water tank (WT) filled with ultra–high

purity water, 16.9 m height, acts as a passive shield against gamma rays and neutrons as well as an active

muon veto. For furthers information about the Borexino detector see [13, 14].

In order to decrease the systematic errors and to optimize the values of several input parameters of the

Monte–Carlo (MC) simulation, several calibration campaigns with radioactive sources [15] were performed.

In Borexino ν̄e are detected via the inverse β decay: ν̄e + p → e+ + n. This reaction has a threshold of

1.806 MeV, above which there are only a small fraction of ν̄e from the 238U (6.3%) and 232Th (3.8%) series.

The e+ comes to rest and annihilates while the free n is captured on protons giving a 2.22 MeV de–excitation

γ ray that provides a delayed coincidence event. The visible energy of Eprompt = Eν̄e −0.784 MeV is detected

in a single prompt event.

In Borexino the mean neutron capture time was measured with an Am − Be neutron source that gave a

value of τ = (254.5 ± 1.8) μs [16]. The time and spatial coincidence of prompt and delayed events gives

a clean signature of ν̄e detection, that help for a further suppression of background sources. The Borexino
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detector was calibrated using several α, β, γ and n sources inserted in the scintillator volume [15]. In order

to study the detector response to captured neutrons and to protons recoiling off neutrons the Am−Be neutron

source (∼10 neutrons/s with energies up to 10 MeV) was deployed in twenty-five different positions.

3. Expected Signal

In paper [12] the dataset consists in 1352.60 days of live time collected between December 2007 and

August 2012. After all quality cuts the fiducial exposure is (613 ± 26) ton per year corresponding to (3.69

± 0.16) · 1031 protons per year.

The main anti–neutrino background to the geo–neutrino measurement comes from nuclear power plants;

in the analysis 446 nuclear cores, all over the world, have been considered. The mean weighted distance

from the Borexino detector (42.4540◦ latitude and 13.5755◦ longitude) is about 1200 km.

In order to calculate the expected number of events Nreact from reactors, the σ(Eν̄) of the inverse β decay

cross section was taken from [17], while the neutrino oscillation parameters used in the calculation of the

Pee survival probability were the ones derived in [19] for normal hierarchy: Δm2 = (7.54 +0.26
−0.22

)·10−5 eV2;

sin2 θ12 = (3.07 +0.18
−0.16

)·10−1; sin2 θ13 = (2.41 ± 0.25)·10−2. For the effective thermal power calculation, data

have been provided, for each nuclear core, by the International Atomic Energy Agency (IAEA) [18].

In the three flavor scenario, a 4.6% decrease in the predicted signal with respect the two neutrino case is

expected, but the spectral shape does not change significantly. In the calculations it is also included a +0.6%

contribution from matter effects [7].

For the exposure of (613 ± 26) ton per year, after all cuts, the number of expected reactor ν̄e candidates

is Nreact = (33.3 ± 2.4) events.

4. Cuts and Backgrounds

In order to select ν̄e’s candidates several quality cuts have been applied. Naming Qprompt and Qdelayed

the photomultipliers light yields for the prompt (e+ candidate) and delayed (n candidate) events, it was

set Qprompt > 408 p.e. and 860 p.e. < Qdelayed < 1300 p.e.; the time interval Δt between the prompt and the

delayed event was set 20 μs < Δt < 1280 μs, and the reconstructed distance ΔR < 1 m. In order to improve the

background rejection (discrimination between highly ionizing particles (α, p) from lower specific ionization

particles (β±, γ)) a pulse–shape analysis as been performed applying the so–called Gatti parameter G [20].

The total detection efficiency obtained with all these cuts was inferred by Monte–Carlo simulation and it

turned out to be 0.84 ± 0.01. The position reconstruction systematic error of ν̄e candidates is 3.8% [7];

while the systematic error on the vessel shape is 1.6% and on the cuts efficiency is 1%. Summing up all

these systematic errors, we obtain a 4.2% error on the exposure.

Background events which can mimic anti–neutrino interactions can arise from cosmic muons and muon–

induced unstable nuclides. Furthermore they can arise from intrinsic contaminations of the scintillator and

from all materials surrounding the scintillator, and, last but not least, from the accidental coincidences of

non-correlated events. In Table 1 a complete list of all expected backgrounds is presented.

5. Results

The so called golden events, namely the ν̄e candidates that satisfied all the selection criteria and have

uniform spatial and time distributions are 46. As reported in Table 1, the total number of the events due

to the expected background is (0.70 ± 0.18), corresponding to a signal/background ratio of almost 66. For

energies greater than Qprompt > 1300 p.e., above the end–point of the geo–neutrino spectrum, 21 candidates

have been observed. In this energy window, (22.0 ± 1.6) reactor–ν̄e events are expected.

An unbinned maximal likelihood fit of the light yield spectrum of the prompt events candidates has been

performed. According to the chondritic value of 3.9 [21] the Th/U mass ratio was fixed in order to determine

the weights of the geo–neutrino. The reactor ν̄e spectral components were left as free fit parameters. All

background components were limited at ±1σ around the expected value. For what concerns the accidental
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Table 1. Background faking ν̄e interactions (expressed in number of events expected among the 46 golden ν̄e candidates). Upper limits

are at 90% C.L. Table from [12].

Background source Events
9Li–8He 0.25±0.18

Fast n’s (μ’s in WT) <0.07

Fast n’s (μ’s in rock) <0.28

Untagged muons 0.080±0.007

Accidental coincidences 0.206±0.004

Time corr. background 0.005±0.012

(γ,n) <0.04

Spontaneous fission in PMTs 0.022±0.002

(α,n) in scintillator 0.13±0.01

(α,n) in the buffer <0.43

Total 0.70 ± 0.18

background, the measured spectral shape was used and a Monte–Carlo spectrum was employed for the

background induced by (α, n), 9Li and 8He.

The obtained best fit values are Ngeo = (14.3 ± 4.4) events for geo–neutrinos, corresponding to a signal

S geo = (38.8 ± 12.0) TNU1 and Nreact = 31.2+7.0
−6.1

events for the reactors contribution, corresponding to a

signal S react = 84.5+19.3
−16.9

TNU. Considering the cross section of the detection interaction taken from [17], the

measured geo–neutrino fluxes are φ(U) = (2.4 ± 0.7) × 106 cm−2 s−1 and φ(Th) = (2.0 ± 0.6) × 106 cm−2

s−1. Fig. 1 and Fig. 2 show the data and the best fit of the geo–neutrino and the reactor anti–neutrino signals

compared to expectations.
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Fig. 1. Spectrum of the 46 prompt ν̄e candidates (golden events) and the best fit with the contribution of the geo–ν̄e in yellow. The

dashed blue line is the geo–ν̄e signal resulting from the fit and the dashed red line (orange area) is the reactor–ν̄e signal from the fit.

The background contribution is almost negligible. In abscissa Qprompt light yield (approximately 500 p.e./MeV). From [12].

The contribution of the local crust (LOC) to the total geo–neutrino signal has been estimated in [22]

using a local three dimension geology in the vicinity of the Gran Sasso laboratory, the obtained value being

S geo(LOC) = (9.7 ± 1.3) TNU. Adding the contribution from the Rest Of the Crust (ROC), evaluated in a

recent calculation by Huang et al. [23], the geo–neutrino signal from the crust (LOC+ROC) is S geo(Crust)

= (23.4 ± 2.8) TNU. The difference between the Borexino geo–neutrino rate and the estimated crustal

components give a contribution of the mantle equal to S geo(Mantle) = (15.4 ± 12.3) TNU.

11 TNU = 1 Terrestrial Neutrino Unit = 1 event / year / 1032 protons
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Fig. 2. Contour plots for the geo–neutrino and the reactor anti–neutrino signals in TNU units (at 68.27, 95.45, and 99.73% C.L.). The

black horizontal lines are the extremes of the expectations for different BSE models while the back vertical lines are the 1σ expectation

band for S rea. From [12].
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