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Abstract: Large-area PhotoMultiplier Tubes (pmt) allow to efficiently instrument Liquid Scintil-
lator (LS) neutrino detectors, where large target masses are pivotal to compensate for neutrinos’
extremely elusive nature. Depending on the detector light yield, several scintillation photons stem-
ming from the same neutrino interaction are likely to hit a single pmt in a few tens/hundreds of
nanoseconds, resulting in several photoelectrons (pes) to pile-up at the pmt anode. In such scenario,
the signal generated by each pe is entangled to the others, and an accurate pmt charge reconstruction
becomes challenging. This manuscript describes an experimental method able to address the pmt
charge reconstruction in the case of large pe pile-up, providing an unbiased charge estimator at the
permille level up to 15 detected pes. The method is based on a signal filtering technique (Wiener
filter) which suppresses the noise due to both pmt and readout electronics, and on a Fourier-based
deconvolution able to minimize the influence of signal distortions — such as an overshoot. The
analysis of simulated pmtwaveforms shows that the slope of a linear regressionmodeling the relation
between reconstructed and true charge values improves from 0.769±0.001 (without deconvolution)
to 0.989 ± 0.001 (with deconvolution), where unitary slope implies perfect reconstruction. A C++
implementation of the charge reconstruction algorithm is available online at [1].

Keywords: Calorimeter methods; Liquid detectors; Photon detectors for UV, visible and IR
photons (vacuum) (photomultipliers, HPDs, others); Scintillators, scintillation and light emission
processes (solid, gas and liquid scintillators)
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1 Introduction

The consolidated Liquid Scintillator (LS) technology is driving neutrino physics into the era of
precision calorimetry. The unprecedented scientific achievements of Borexino [2], Daya Bay [3],
Double Chooz [4], KamLAND [5] and RENO [6] experiments have been the trailblazer for a
new generation of multi-kiloton detectors (JUNO [7], Jinping [8], RENO50 [9], SNO+ [10],
ANDES [11]). Going beyond the open issues in particle physics, the perspective will be some
spin-off in applied antineutrino physics [12].

The experimental challenges of neutrino calorimetry revolve around improving both the energy
and the spatial resolution of (anti)neutrino interaction detection. Since both resolution terms scale
with the number of detected scintillation photons, maximizing the detector photocoverage—namely
the sensitive area of the detector— is pivotal to improve them. In many current and future detectors,
technical and budget constraints make the use of large-area PhotoMultiplier Tubes (pmt) the only
viable solution to achieve large photocoverage. In some cases, these constrains even justify a R&D
program dedicated to develop a novel pmt technology [13]. The largest pmt bulbs built to date are
20-inch diameter. Because of their large acceptance, they typically detect many photoelectrons (pe)
per scintillation event, which are likely to pile up at the readout level. That is, the spacing between
the pes’ time of arrival is lower or comparable to the width of a single-photoelectrons (spe) pulse.

When pe pulses overlap, their identification becomes challenging. Especially if the pulses are
affected by an overshoot (a distortion in the pmt output signal described in section 2), two subsequent
pes could easily be mis-reconstructed as a single one. A biased pmt charge reconstruction not only
compromises the linearity — and therefore the resolution — of the detector-wise energy estimator,
but also threatens the time-based reconstruction of the event vertex. In a large detector, a precise
knowledge of the event vertex is crucial to define a fiducial volume meant to reject background
energy depositions arising from natural radioactivity. The relevance of this issue can be further
appreciated by noting that the Daya Bay experiment, after 4 years of smooth data taking, developed
a new readout system based on fast digitizers, and its associated waveform reconstruction, to better
assess the linearity of the detector energy response [14].
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Figure 1. Building blocks of the waveform simulation. Panel A shows the hit generation, where for each
detected pe a random charge value is generated. Panel B shows the analytical shape of a single pe template.
Panel C is the result of the convolution between the spe template and the hits. Panel D contains the pmt
simulated noise. Panel E shows the final pmt waveform resulting from the sum of the signal and of the noise
components.

The goal of this study is twofold: (i) to propose an open-source detector-independent charge
reconstruction algorithm [1] processing the output of a generic fast digitizer (FADC) connected to
a pmt, and (ii) to define a procedure to assess the accuracy of the reconstructed charge, especially
in the case of large pe pile-up. While (i) is based on realistic signal and noise assumptions,
and particular care was devoted to model most of the pmt peculiarities, (ii) is meant to allow a
comparison between any charge reconstruction algorithm. It is worth mentioning that our algorithm
is specifically designed to minimize those charge reconstruction biases introduced by the presence
of an overshoot in the pe pulses, and by the noise fluctuations embedded in the pmt output pulse.

2 PMT Waveform Simulation

We build a pmt waveform simulation with the aim to develop and validate the charge reconstruction
algorithm with a known input signal. To avoid to rely on the specification of a given manufacturer
and/or model, we implement a parametric simulation of a generic pmt response. The emission of a
pe from the photocathode, its collection by the anode, and its subsequent amplification are simulated
as an instantaneous pmt charge output. In accordance to experimental data [15], the charge value q
is generated randomly according to the distribution f (q) in eq. (2.1), adapted from [16]

f (q) =


(1 − ω)

1
σ
√

2π
exp

[
−
(q − q0)

2

2σ2

]
+
ω

τ
exp−

q
τ

q ≥ qp

0 q < qp

(2.1)
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Table 1. Parameters used in eq. (2.1) together with their nominal values.

Parameter Description Value
qo spe calibrated gain 1 pe
qp Pedestal cutoff 0.3 pe
σ spe Gauss width 0.3 pe
ω Under-amplified pe fraction 0.2
τ Exponential decay constant 0.5 pe

Table 2. Parameters involved in the signal (top rows) and noise (bottom rows) simulation of the pmt
waveform. Parameters for which the “Range” column is filled are generated randomly according to a flat
probability density function at the beginning of the simulation.

Parameter Value Range Description Function
U0 20 ADC

spe template eq. (2.2)σ0 0.15
τ0 30 ns
U1 -1.2 ADC

Overshoot eq. (2.3)σ1 55 ns
t1 -4 ns
U2 -2.8 ADC

Overshoot eq. (2.4)
τ2 80 ns
µN 1.5 ADC Baseline

Gaussian
σN 1 ADC White Noise
nFF 5 N(Components)

Fixed
Frequency

fFF [1, 480] MHz Frequency
AFF [0.1, 0.3] ADC Amplitude

The weight ω determines the relative contribution of a Gaussian distribution with respect to an
exponential tail, modeling the faction of under-amplified pes. The width of the former (σ) is set to
30% to describe the typical uncertainty induced by the first dynode amplification (∼ 1/

√
10). The

Gaussian mean value (q0) is set to 1, as in the case of a perfect gain calibration. The exponential
tail accounts for low amplitude hits due to elastically scattered and backscattered electrons from the
first dynode [16]. The parameter qp sets the threshold for the minimum charge to be considered in
order to avoid to simulate the pedestal. The values of all the parameters used in eq. (2.1) are listed
in table 1, and the analysis of their variability is described in section 4. The time at which a charge
output occurs is randomly sampled from a flat distribution spanning a 1 µs-long time window, and
each charge-time pair is defined as a hit.

A sequence of hits, resulting from several pes impinging on the same pmt, are shown as
instantaneous pulses in figure 1A. The pulse position on the horizontal axis represents the hit time
with respect to a reference t0 —for example a global detector trigger—, and the pulse amplitude
represents the pmt output charge. We assume the pmt to be connected to a fast electronics able to
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sample its output at 1 GSample/s, and we describe the voltage drop resulting from the detection of
each hit with a log-normal function (eq. (2.2)) [15, 17]. The AC coupling often used to split the
pmt high-voltage from the pmt output signal might induce a distortion in the pmt output waveform.
We refer to the component of the signal with a polarity opposite to the log-normal as the overshoot,
and we follow [15] to describe it using the sum of a Gaussian (eq. (2.3)) and an exponential tail
(eq. (2.4)). The values of the parameters used in eq. (2.2)), (2.3 and 2.4 are listed in table 2. The
values related to the spe amplitude are chosen to obtain an approximate 0.5 mV/count resolution,
resulting in a dynamic range of ∼50pe when using a commercial 10-bit digitizer. The overshoot
values are adapted from the Daya Bay experience [15]. The analytical shape of a spe-waveform is
reported in eq. (2.5) and shown in figure 1B. We name this shape the spe template. The signal-only
waveform resulting from the hits shown is figure 1A is built by convolving each hit with the spe
template, and it is shown in figure 1C.

Upeak(t) = U0 · exp

(
−

1
2

(
ln(t/τ0)

σ0

)2
)

(2.2)

UOS1(t) = U1 · exp

(
−

1
2

(
t − t1
σ1

)2
)

(2.3)

UOS2(t) = U2 ·
1

exp
(

50 ns−t
10 ns

)
+ 1
· exp

(
−

t
τ2

)
(2.4)

U(t) = Upeak +UOS1 +UOS2 (2.5)

To make the simulation more realistic, we add a noise waveform (figure 1D) to the waveform
built using only signal hits. The simulated noise includes a Gaussian component and some periodic
components with fixed frequency. The former describes an overall baseline offset and time-
uncorrelated baseline fluctuations. The Gaussian mean (µN) is set to 1.5 ADC counts, and the
Gaussian width (σN) to 1 ADC count. The fixed-frequency components describe potential noise
sources embedded in, or due to, the readout circuit. We simulate 5 such components (nFF), with a
random amplitude generated flat in the 0.1-0.3 ADC counts range, and with a random frequency in
the 1-480 MHz range. The ultimate waveform comprising signal hits and all noise components is
shown in figure 1E.

3 Charge Reconstruction

The simplest way to determine the pmt output charge is to sum up all the waveform samples collected
in a readout window. However, this approach would embed both the noise and the overshoot into the
charge measurement, resulting in a rough and biased charge estimator. The charge reconstruction
algorithm described in this section and sketched in figure 2 is meant to mitigate the role of both
noise and overshoot. It comprises two steps: (i) the Deconvolution Algorithm (DA), which filters
the raw waveforms reducing the noise, and deconvolves spe templates out of the filtered waveforms;
and (ii) the Integration Algorithm (IA), which integrates the deconvolved waveforms with the aim
to determine the overall pmt output charge.

– 4 –
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Figure 2. Schematic diagram of the charge reconstruction algorithm. The spe template in the time domain
is computed by averaging 104 spe waveforms that simulate a LED-based calibration dataset. A Fast Fourier
Transform (FFT) is applied to both the spe template and the pmt waveform to be reconstructed. The latter is
processed using the Wiener Filter to minimize the noise and suppress the overshoot. The spe template in the
frequency domain is then used as a benchmark pattern to deconvolve the filtered waveform in the frequency
domain. We eventually process the deconvolved waveform with an Inverse FFT, so that the waveform in the
time domain could be integrated to compute the pmt output charge.
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Figure 3. Frequency power spectra of a pure-noise waveform (red) and a complete waveform comprising
noise and pe pulses (blue). The two spectra are used in eq. (3.1) to derive the Wiener Filter. The spikes in
the noise spectrum are due to the fixed-frequency noise components.
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Figure 4. Distribution of all the baseline-subtracted FADC samples in a waveform, built using 104 waveforms
containing mostly 0 or 1 hit (dataset S). Noise fluctuations are responsible for the peak centered at zero.
FADC samples related to the fraction of the waveform where spe pulses occurred are responsible for the tail
extending to large ADC values. A 6 ADC trigger threshold is chosen to identify waveforms where at least 1
hit is present.

Both filtering and deconvolution are data-driven methods that need to be trained and tested.
To this end, we rely on waveforms generated using the simulation package described in section 2.
We produce two large datasets, one comprising mostly spe waveforms (S dataset), and one with
waveforms containing multiple hits (M dataset). In order to emulate a real experimental setup, the
charge reconstruction algorithm is designed not to use the true hit information (time and charge).
We unblind such parameters only when assessing its performance —as described in section 4. The
first dataset emulates the behavior of a low-intensity LED placed in front of a pmt to measure its spe
response, where one typically gets either 0 hits or a single hit in the resulting waveform (p(0)' 0.3,
p(1)' 0.6, and p(>1)' 0.1). In the second dataset, waveforms are generated such that the number
of true hits follows a flat distribution in the [0-15] range. This distribution is chosen to investigate
the performance of the reconstruction algorithm even in those events experiencing high pile-up.

The noise pattern present in simulated waveforms consists mostly of bin-to-bin uncorrelated
fluctuations. On the contrary, a spe pulse lasts for a few tens of ns. The difference between the
two time scales is highlighted in figure 3, where the frequency spectra of a waveform with no hits
(pure noise, red curve) and a waveform with 4 hits (blue curve) are compared. The former is rather
flat, with the exception of the fixed-frequency noise components, which manifest as spikes in the
frequency domain. The latter, on the contrary, is peaked at low frequencies, as a result of spe pulses
being much slower than the noise fluctuations. We exploit such a difference to suppress the noise by
means of a Wiener Filter —a technique commonly employed in signal processing [18]. The filter
is defined by the following kernel equation

H[ f ] =
|S[ f ]|2

|S[ f ]|2 + |N[ f ]|2
(3.1)

– 6 –
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where S[ f ] and N[ f ] are the frequency spectra of the signal and of the noise. In literature, this
filter is referred to as the optimal linear filter for the removal of additive noise [19]. Namely,
the coefficients H[ f ] of the Wiener Filter are calculated to minimize the average squared distance
between the filter output and the desired signal [20]. Such coefficients are then used to weight the
frequency components of the waveform being processed.

Eq. (3.1) can be rearranged by dividing both the numerator and the denominator by the
noise power spectrum |N[ f ]|2, and by substituting the variable SNR[ f ] = |S[ f ]|2/|N[ f ]|2. This
manipulation yields

H[ f ] =
SNR[ f ]

SNR[ f ] + 1
(3.2)

where SNR is a ratio of the signal power to the noise power. Eq. (3.2) makes the frequency response
of the filter more intuitive, being a real positive number in the range 0 ≤ H[ f ] ≤ 1. Frequencies
that are barely affected by noise (SNR[ f ] → ∞) result in the filter being close to unity, hence
applying little or no attenuation to the input components. On the contrary, frequencies that are
severely affected by noise (SNR ∼ 0) result in the filter to heavily attenuate them (H[ f ] ∼ 0). In
summary, the Wiener Filter attenuates each frequency component in proportion to an estimate of
its signal-to-noise ratio.

The deconvolution is a techniquemeant to identify and resolve the presence of spe pulses within
a filtered waveform, with the aim to perform an unbiased measurement of the pmt output charge.
It is implemented as a division in the frequency domain between the waveform to be reconstructed
and the template of a spe pulse. We build the template by time-aligning and averaging 104 spe
waveforms selected from the S dataset, which emulates calibration data collected by illuminating
the pmt with a low intensity LED. The selection determining which waveforms are to be used in
the template building is based on a threshold-crossing criterion: only waveforms whose baseline-
subtracted amplitude exceeds 30% of the mean spe amplitude are retained. The distribution of all
the digitized samples in the S dataset (1000 samples per waveform) is shown in figure 4, where
the selection threshold clearly marks the transition between the noise region and the signal region.
To further clean the spe template from those noise contributions not suppressed by the averaging
process, all frequencies above 120 MHz are stripped.

The outcome of the deconvolution performed on the waveform in figure 1E is shown in figure 5.
Here the deconvolved waveform is brought back to the time domain by means of an Inverse Fast
Fourier transform, and it shows narrow pulses whose amplitude is proportional to the original hit
charge. However, rather than using the pulse amplitude, we find a better estimator of the hit charge
to be the integral of the pulse.

To minimize the contribution of residual noise to the pulse integral, and the possible biases
arising from the ringing visible in the vicinity of the pulses (Gibbs effect), only waveform samples
falling within a Region Of Interest (ROI) are summed up to yield the final charge value. A ROI
is opened any time the deconvolved waveform crosses a threshold corresponding to 30% of the
amplitude of a deconvolved spe pulse. We define the minimal ROI to be 6 ns wide, and we extend
it if at its end the waveform is still above the threshold.

Following an extensive optimization procedure, we determine that our reconstruction algorithm
is better suited to process waveforms with more than two hits. Below this value, the CPU power
required to filter and deconvolve the waveform is not paying off in terms of charge reconstruction

– 7 –
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Figure 5. Waveform arising from filtering and deconvolving figure 1E. True hits are shown for reference
in red. The charge of each pe is reconstructed by integrating the bins falling within a ROI (shaded areas)
defined starting from the time at which the waveform crosses a trigger threshold (dashed line). The threshold
is set to be 30% of the amplitude of a spe pulse.

performance. As a consequence, we implement a waveform preselection to determine how to
process each waveform. We define ∆t to be the time during which the spe template stays over
threshold (6 ns). When a waveform is found to be over threshold for at least 2∆t, it undergoes the
full charge reconstruction comprising filtering and deconvolution. Otherwise, a simple integral of
the bins over threshold is used to compute the reconstructed charge.

4 Results and discussion

The performance of the charge reconstruction algorithm is assessed by processing a set of 104

simulated waveforms containing a random number of pe in the range [0,15], namely the M dataset.
In particular we aim to show how the algorithm improves the precision and accuracy of the charge
estimate with respect to a simple integration.

To quantify the performance of the algorithm, we process the M dataset waveforms twice, once
using the IA alone, and once using both the DA and the IA. For each of the two reconstruction
approaches we build a correlation plot using pairs of reconstructed and true charge values, as shown
in figure 6. An ideal reconstruction algorithm would result in the two quantities to be maximally
correlated, and a linear regression would yield unitary slope and null intercept. Any deviation from
such behavior is therefore to be interpreted as a bias in the reconstruction. In particular, a non-null
intercept (q) models any bias that does not depend on the number of reconstructed pe, while a
non-unitary slope (m) models any pe-dependent bias effectively compromising the linearity of the
reconstruction algorithm. To further measure how scattered the reconstructed charge values are with
respect to the true charge values, we use the Pearson correlation coefficient (ρ). We interpret the

– 8 –
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latter as an estimator of the charge reconstruction precision, while we interpret the linear regression
coefficients as a measurement of its accuracy. By comparing the two plots shown in figure 6, it
can be noticed that the algorithm significantly improves both the precision and the accuracy of
the charge reconstruction. Indeed, m improves from 0.769 to 0.989, q improves from 0.540 to
0.053, and ρ improves from 0.979 to 0.988. To make the meaning of these numbers more evident,
we report that if waveforms with 5 and 10 true pes are processed with the IA alone, the average
reconstructed charge is biased by 7% and 12% respectively. While, in the case of DA+IA, the bias
becomes negligible (at permille level) in both cases. Figure 7 additionally shows the distribution of
the true and reconstructed charge values for events with a number of pes ranging between 1 and 15.

We further assess the resilience of the reconstruction algorithm to possible distortions in the
input waveform. The data taking of a typical neutrino experiment spans indeed several years—if not
decades—, during which several aging issues might compromise the initial pmt performance. Such
issues often affect both the noise level and the shape of spe pulses. To evaluate how the precision
and the accuracy of the charge reconstruction degrades due to variations in the pmt waveforms
with varying shape, we produce new datasets in which all the pmt input parameters are smeared by
10%, one at a time. In analogy to the procedure described above, (i) we process all these datasets
using the full reconstruction algorithm (IA+DA); (ii) for each dataset we build the reco-true charge
correlation plots; (iii) we use these plots to perform a linear regression and to compute the Pearson
correlation coefficient. The discrepancy between the resulting values and the nominal values are
plotted in terms of residuals in figure 8. Some considerations follow.

• Given the different role that ρ, m and q play in assessing the algorithm performance, only
residuals within the same panel can be compared. That is, residuals here are meant to draw
a hierarchy among the parameters describing the spe shape, with the aim to show which of
them affects the reconstruction algorithm the most.

• From the left panel it is evident that injecting spes with varying amplitude (U0) compromises
the algorithm precision. This is expected, since the spe template now fails to describe the spe
pulses present in the pmt output waveforms.

• The parameters defining the width of the spe shape, namely τ0 and σ0, heavily affect the
accuracy of the linear regression parameters.

• The parameters shaping the overshoot (U1, σ1, t1, U2, τ2) play a negligible role, as a
consequence of the successful overshoot stripping by the DA.

• The white noise amplitude (σN ) is able to introduce a non-negligible charge bias, suggesting
that the implementation of the filter has room to be improved.

5 Conclusions

Thismanuscript describes a newmethod to reconstruct the output charge of a pmtwhen sampledwith
a fast digitizer. Its originality stands in putting together several well established signal processing
techniques with the aim to improve the charge reconstruction accuracy over a large dynamic range,
in terms of both mean value of the reconstructed charge and of dispersion around the mean.

– 9 –



2
0
1
8
 
J
I
N
S
T
 
1
3
 
P
0
2
0
0
8

True Charge [PE]
0 2 4 6 8 10 12 14 16

R
ec

on
st

ru
ct

ed
 C

ha
rg

e 
[P

E]

0

2

4

6

8

10

12

14

16
Linear Regression (y = mx + q)

 0.001±m = 0.769 
 0.010±q = 0.540 

Pearson Correlation
 = 0.979ρ

IA only
Linear Regression

Perfect Reconstruction

True Charge [PE]
0 2 4 6 8 10 12 14 16

R
ec

on
st

ru
ct

ed
 C

ha
rg

e 
[P

E]

0

2

4

6

8

10

12

14

16
Linear Regression (y = mx + q)

 0.001±m = 0.989 
 0.009±q = 0.053 

Pearson Correlation
 = 0.988ρ

DA+IA
Linear Regression

Perfect Reconstruction

Figure 6. Reconstructed charge versus true charge for 104 pmt waveforms. The reconstructed charge is
computed using the IA alone (left) and DA+IA (right). In both panels the green line is the result of a linear
regression performed on the 104 data points.

Figure 7. Distribution of the true charge (blue) and of the reconstructed charge (pink) using the full
reconstruction algorithm (DA + IA). Each plot is built using waveforms with a defined number of pes ranging
from 1 (bottom left) to 15 (top right). The mean true charge is consistently lower than the true number of pes
because of the exponential tail used to simulate the spe distribution in eq. (2.1).

The algorithm comprises a filtering step, a deconvolution step, and an integration step, which
aim to reduce the pmt noise, to compensate for predictable distortions in the pmt waveform, and to
infer the number of pes detected by the pmt. Some of its features are summarized here below.

• The filter allows to mitigate not only white noise, but also noise at fixed frequencies often
introduced at the level of the readout electronics (e.g. due to grounding issues).
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Figure 8. Residuals of the three performance parameters (linear regression coefficients and correlation
coefficient) assessing how the charge reconstruction worsens when the input waveforms contain pulses that
are different from the spe template. The input waveforms here are produced by applying a 10% smearing to
each of the parameters listed on the vertical axis of the plot.

• The deconvolution is based on a spe template, which can be automatically derived from dark
count events, effectively introducing a zero dead-time calibration procedure. In the case of
an experiment using different pmt types, the algorithm can handle all of them naturally by
computing a different template for each type. Moreover, the capability to build new templates
continuously allows to account for any variation in the pmt performance over time.

• The deconvolution allows an a-priori estimate of the time needed to reconstruct each wave-
form. The time needed to perform themost CPU-intensive operation (Fast Fourier Transform)
depends only on the number of samples within a waveform, and not on its complexity. On the
contrary, an approach based on reconstructing the charge by means of an analytic fit would
become slow and unreliable in case of large pile-up. Such consideration becomes even more
relevant in detectors instrumented with a large number of pmts.

• The deconvolution effectively reduces the undesired spe features from the pmt waveform
(such as the overshoot), which can in principle bias the charge reconstruction, making the
integration step much more robust.

We tested the reconstruction algorithmby analyzingwaveformdatasets producedwith a custom-
made pmt simulation. The latter allowed us to simulate a generic pmt readout starting from an
analytic spe signal template.

We investigated the effect of processingwaveformswith a shape different from the spe template.
We did it by producing a sample of waveforms where the parameters describing the spe pulses were
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smeared randomly by 10% around their nominal value. The aim was to test the resilience of the
algorithm to any change in the pmt waveform due, for instance, to aging issues. We determined
that the reconstruction algorithm is differently sensitive to the input parameters. In particular, those
describing the amplitude and the duration of a spe pulse are the most likely to bias the reconstruction
performance.

The overall charge reconstruction algorithm here described is geared to play a key role in
improving the energy resolution of LS detectors with large photocoverage. Such detectors are
indeed expected to be severely affected by energy-related systematic uncertainties stemming from
the charge reconstruction of pmt waveforms where several pes pile up. To provide the community
with the possibility to test our reconstruction algorithm on different inputs, and to compare its
performance to different reconstruction tools, we made a C++ implementation available at [1].
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