GLSL Tutorial

| ntr oduction

In this tutorial shader programming using GLSL W# covered. Shaders are a hot topic and 3D
games have shown that they can be put to goodugst temarkable effects. This tutorial aims at
providing an introduction to the world of shaders.

There is an introduction to the specification, taading theDpenGL 2.0andGLSL official specs is
always recommended if you get serious about this.dssumed that the reader is familiar with
OpenGL programming, as this is required to undadstaome parts of the tutorial.

GLSL stands for GL Shading Language, often refeasglslang, and was defined by the
Architectural Review Board of OpenGL, the governioggly of OpenGL.

| won't go into disputes, or comparisons, with ®gidia's proposal for a shading language that is
also compatible with OpenGL. The only reason | eh@£SL and not Cg for this tutorial, is GLSL
closeness to OpenGL.

Before writing shaders, in any language, it is acdjmlea to understand the basics of the graphics
pipeline. This will provide a context to introduseaders, what types of shaders are available, and
what shaders are supposed to do. It will also slhbat shaders can't do, which is equally
important.

After this introduction the OpenGL setup for GLSLdiscussed. The necessary steps to use a
shader in an OpenGL application are discussednrestetail. Finally it is shown how an OpenGL
application can feed data to a shader making ierflexible and powerful.

Some basic concepts such as data types, varishésments and function definition are then
introduced.

The tutorial covers both the ARB extensions andri@ie2.0 versions. The former for greater
compatibility; and the latter, because in the reture it will be the standard solution. The
differences are small, and mostly have to do wigh#y different function names and constants.
Color coding has been used to help the readestmguish between them. The ARB stuff is
presented in grey, and the OpenGL 2.0 in orange.

This dual coverage is prone to mistakes, so pleasee know if you find something wrong.
Please bear in mind that this is work in progresstherefore bugs are likely to be present in the

text or demos. Let me know if you find any bug,aetiess of how insignificant, so that | can clean
them up. Also suggestions are more than welcomepé you enjoy the tutorial.

Pipeline Overview

The following figure is a (very) simplified diagraofi the pipeline stages and the data that travels
amongst them. Although extremely simplified it magh to present some important concepts for

shader programming. In this subsection the fixedttionality of the pipeline is presented. Note that
this pipeline is an abstraction and does not naciégsneet any particular implementation in all its
steps.

Vertex Connectivity

Transformed ﬂ

Vertices Vertices Primitive

Transformation

Rasterization

Fragments

Positions

Fragment
s [exturing and

Fragments

g} Raster
Pixel Updates | ©Operafions

Vertex Transformation

In here a vertex is a set of attributes such dsdtion in space, as well as its color, nornetiure
coordinates, amongst others. The inputs for tlaigesare the individual vertices attributes. Some of
the operations performed by the fixed functionaditythis stage are:

« Vertex position transformation
« Lighting computations per vertex
« Generation and transformation of texture coordmate

Primitive Assembly and Rasterization
The inputs for this stage are the transformed aestias well as connectivity information. This
latter piece of data tells the pipeline how thetiges connect to form a primitive. It is in herath

primitives are assembled.

This stage is also responsible for clipping operetiagainst the view frustum, and back face
culling.

Rasterization determines the fragments, and piagtipns of the primitive. A fragment in this
context is a piece of data that will be used toatpa pixel in the frame buffer at a specific |omat
A fragment contains not only color, but also norsreahd texture coordinates, amongst other
possible attributes, that are used to compute ¢lepixel's color.

The output of this stage is twofold:

- The position of the fragments in the frame buffer

« The interpolated values for each fragment of thdbates computed in the vertex
transformation stage

The values computed at the vertex transformatiagestcombined with the vertex connectivity
information allow this stage to compute the appiadprattributes for the fragment. For instance,
each vertex has a transformed position. When ceriaglthe vertices that make up a primitive, it is
possible to compute the position of the fragmehth@® primitive. Another example is the usage of
color. If a triangle has its vertices with diffetamlors, then the color of the fragments inside th
triangle are obtained by interpolation of the tglka's vertices color weighted by the relative
distances of the vertices to the fragment.

Fragment Texturing and Coloring

Interpolated fragment information is the input lmtstage. A color has already been computed in
the previous stage through interpolation, and e itecan be combined with a texel (texture
element) for example. Texture coordinates have lzsm interpolated in the previous stage. Fog is
also applied at this stage. The common end rekthistage per fragment is a color value and a
depth for the fragment.

Raster Operations
The inputs of this stage are:

- The pixels location
« The fragments depth and color values

The last stage of the pipeline performs a serig¢esis on the fragment, namely:

« Scissor test
« Alpha test
« Stencil test
« Depth test

If successful the fragment information is then uedpdate the pixel's value according to the
current blend mode. Notice that blending occury ankhis stage because the Fragment Texturing
and Coloring stage has no access to the framerbiitie frame buffer is only accessible at this
stage.

Visual Summary of the Fixed Functionality

The following figure presents a visual descriptadrihe stages presented above:

LINE(o o); TRIANGLE(® @ o |

Vertices Transf Vertices Connectivity
o ° o nformation
°] Geom. Ops.
e o * b
Assembly
] _ 0_'_.__'_._,_,_0

Colored Fragments Fragments
Raster
e

e ™ et

Interpolation

|

|

L]

[[]

Replacing Fixed Functionality

Recent graphic cards give the programmer the plbditefine the functionality of two of the above
described stages:

« Vertex shaders may be written for the Vertex Tramaftion stage.
« Fragment shaders replace the Fragment Texturingatating stage's fixed functionality.

In the next subsections these programmable sthge=after the vertex processor and the fragment
processor, are described.

Vertex Processor

The vertex processor is responsible for runningvéréex shaders. The input for a vertex shader is
the vertex data, namely its position, color, nosnatc, depending on what the OpenGL application
sends.

The following OpenGL code would send to the vepiescessor a color and a vertex position for
each vertex.

glBegin(...);

glColor3f(0.2,0.4,0.6);
glVertex3f(-1.0,1.0,2.0);

glColor3f(0.2,0.4,0.8);
glVertex3f(1.0,-1.0,2.0);

glEnd();

In a vertex shader you can write code for taskb sisc

« Vertex position transformation using the modelviad projection matrices
- Normal transformation, and if required its normatian

« Texture coordinate generation and transformation

- Lighting per vertex or computing values for ligtgiper pixel

« Color computation

There is no requirement to perform all the operetiabove, your application may not use lighting
for instance. However, once you write a vertex shgdu are replacing the full functionality of the
vertex processor, hence you can't perform norraaktormation and expect the fixed functionality
to perform texture coordinate generation. Whenrtgexeshader is used it becomes responsible for
replacing all the needed functionality of this gtad thepipeline

As can be seen in the previagsectiorthe vertex processor has no information regarding
connectivity, hence operations that require topiciigknowledge can't be performed in here. For
instance it is not possible for a vertex shadgretidorm back face culling, since it operates on
vertices and not on faces. The vertex processaepses vertices individually and has no clue of
the remaining vertices.

The vertex shader is responsible for at leastngiéi variablegl Position, usually transforming the
vertex with the modelview and projection matrices.

A vertex processor has access to OpenGL statecaa perform operations that involve lighting
for instance, and use materials. It can also adeassres (only available in the newest hardware).
There is no access to the frame buffer.

Fragment Processor

The fragment processor is where the fragment skadar This unit is responsible for operations
like:

« Computing colors, and texture coordinates per pixel
- Texture application

« Fog computation

- Computing normals if you want lighting per pixel

The inputs for this unit are the interpolated valaemputed in the previous stage of the pipeline
such as vertex positions, colors, normals, etc...

In the vertex shader these values are computeshfdr vertex. Now we're dealing with the
fragments inside the primitives, hence the needh®interpolated values.

As in the vertex processor, when you write a fraginséader it replaces all the fixed functionality.
Therefore it is not possible to have a fragmendshé&exturing the fragment and leave the fog for
the fixed functionality. The programmer must coletiects that the application requires.

The fragment processor operates on single fragmieat# has no clue about the neighboring
fragments. The shader has access to OpenGL statkardo the vertex shaders, and therefore it
can access for instance the fog color specifiexhi®penGL application.

One important point is that a fragment shader cdr@hge the pixel coordinate, as computed
previously in the pipeline. Recall that in the earprocessor the modelview and projection matrices
can be used to transform the vertex. The viewpmrtes into play after that but before the fragment
processor. The fragment shader has access toxils fmcation on screen but it can't change it.

A fragment shader has two output options:

- to discard the fragment, hence outputting nothing
« to compute eithegl_FragColor (the final color of the fragment), gt_FragData when
rendering to multiple targets.

Depth can also be written although it is not reggiisince the previous stage already has computed
it.

Notice that the fragment shader has no accesetivaime buffer. This implies that operations such
as blending occur only after the fragment shadsmraa.

OpenGL Setup for GLSL - Overview

This section, OpenGL Setup for GLSL, assumes yayoie pair of shaders, a vertex shader and a
fragment shader, and you want to use them in amGpapplication. If you're not ready yet to
write your own shaders there are plenty of plaoaget shaders from the internet. Try #ie from

the Orange Book. The tools for shader developmmamhelyShader Designesr Render Monkey

all have a lot of shader examples.

As far as OpenGL goes, setting your applicatiasinglar to the workflow of writing a C program.
Each shader is like a C module, and it mustdmepiled separately, as in C. The set of compiled
shaders, is thelinked into a program, exactly as in C.

Both the ARB extensions and OpenGL2.0 are beind usbere. If you are new to extensions or
using OpenGL above version 1.1 (as supported byddaft) | suggest you take a lookGELEW.
GLEW simplifies the usage of extensions and newesions of OpenGL to a great deal since the
new functions can be used right away.

If relying on extensions, because you have no stppoOpenGL 2.0 yet, then two extensions are
required:

GL_ARB_fragment_shader

GL_ARB_vertex_shader
A small example of a GLUT program using GLEW todhthe extensions could be as shown
below:

#include <GL/glew.h>
#include <GL/glut.h>

void main(int argc, char **argv) {

glutlnit(&argc, argv);

glewlnit();
if (GLEW_ARB_vertex_shader && GLEW_ARB_fragment_s hader)
printf("Ready for GLSL\n");

else {
printf("Not totally ready :(\n");
exit(1);

}

setShaders();

glutMainLoop();

To check for OpenGL 2.0 availability you could sgmething like this

#include <GL/glew.h>
#include <GL/glut.h>

void main(int argc, char **argv) {

glutinit(&argc, argv);

glewlnit();
if (glewlsSupported("GL_VERSION_2_0"))
printf("Ready for OpenGL 2.0\n");

else {
printf("OpenGL 2.0 not supported\n”);
exit(1);

}

setShaders();

glutMainLoop();

The figure bellow shows the necessary steps (imGpe2.0 syntax) to create the shaders, the
functions used will be detailed in latter sections.

Vertex Shader
glCreateShader

Program ﬂ _____
glCreateProgram glShaderSource | == =

| I

glAttachShader (=== | 9COmpileShader

[L Fragment Shader
glAttachShader | giCreateShader

4 |

glLinIcF'[iogram giShaderSource <= =

glUseProgram

glCompileshader

In the next subsections the steps to create agmogre detailed.

OpenGL Setup for GLSL - Creating a Shader

The following figure shows the necessary stepsdate a shader.
Shader

glCreateShader

]

glShaderSource [€7== |=

J

glCompileshader

The first step is creating an object which will asta shader container. The function available for
this purpose returns a handle for the container.

The OpenGL 2.0 syntax for this function is as fato

GLuint glCreateShader(GLenum shaderType);

Parameter:

shaderType - GL_VERTEX_SHADER or GL_FRAGMENT_SHADER

The ARB extensions syntax for this function is @lfofvs:

GLhandleARB glCreateShaderObjectARB(GLenum shadezTy
Parameter:
shaderType - GL_VERTEX_SHADER_ARB or GL_FRAGMENT_SBER_ARB.
You can create as many shaders as you want taadgdrogram, but remember that there can only
be amain function for the set of vertex shaders and mam function for the set of fragment

shaders in each single program.

The following step is to add some source code.sbugce code for a shader is a string array,
although you can use a pointer to a single string.

The syntax of the function to set the source cod®penGL 2.0 syntax, for a shader is:

void glShaderSource(GLuint shader, int numOfStrirgsist char **strings, int *lenOfStrings);
Parameters:

shader - the handler to the shader.

numOfStrings - the number of strings in the array.

strings - the array of strings.

lenOfStrings - an array with the length of eacimgtror NULL, meaning that the strings are
NULL terminated.

And using the ARB extensions:

void glShaderSourceARB(GLhandleARB shader, int ni@tihgs, const char **strings, int
*lenOfStrings);

Parameters:
shader - the handler to the shader.

numOfStrings - the number of strings in the array.
strings - the array of strings.

lenOfStrings - an array with the length of eacimgtror NULL, meaning that the strings are
NULL terminated.

Finally, the shader must be compiled. The functeachieve this using OpenGL 2.0 is:

void glCompileShader(GLuint shader);
Parameters:

shader - the handler to the shader.

And using the ARB extensions:

void glCompileShaderARB(GLhandleARB shader);
Parameters:

shader - the handler to the shader.

OpenGL Setup for GLSL - Creating a Program

The following figure shows the necessary stepstaghader program ready and going.
Program

glCreateProgram

l

glAttachShader

!

glAttachShader |

]

glLinkProgram

J

glUseProgram

The first step is creating an object which will asta program container. The function available for
this purpose returns a handle for the container.

The syntax for this function, in OpenGL 2.0 synisuas follows:

GLuint glCreateProgram(void);

And using the ARB extension is:

GLhandleARB glCreateProgramObjectARB(void);

You can create as many programs as you want. @nciering, you can switch from program to
program, and even go back to fixed functionalityiniyia single frame. For instance you may want
to draw a teapot with refraction and reflectionddra, while having a cube map displayed for
background using OpenGL's fixed functionality.

The next step involves attaching the shaders ateatiéne previousubsectiorio the program

you've just created. The shaders do not need tofgiled at this time; they don't even have to
have source code. All that is required to attashader to a program is the shader container.

To attach a shader to a program use the OpenGiu2cfion:

void glAttachShader(GLuint program, GLuint shader);
Parameters:
program - the handler to the program.

shader - the handler to the shader you want tohatta

And using the ARB extension is:

void glAttachObjectARB(GLhandleARB program, GLhasdRB shader);
Parameters:

program - the handler to the program.
shader - the handler to the shader you want tohatta

If you have a pair vertex/fragment of shaders yo'ed to attach both to the program. You can
have many shaders of the same type (vertex or #agmttached to the same program, just like a C
program can have many modules. For each type disliaere can only be one shader withaan
function, also as in C.

You can attach a shader to multiple programs,fstaince if you plan to use the same vertex shader
in several programs.

The final step is to link the program. In ordectory out this step the shaders must be compiled as
described in the previous subsection.

The syntax for the link function, in OpenGL 2.0asfollows:

void glLinkProgram(GLuint program);
Parameters:

program - the handler to the program.

The syntax for the link function, using the ARB @&xsions, is:

void glLinkProgramARB(GLhandleARB program);
Parameters:

program - the handler to the program.
After the link operation the shader's source cambdified, and the shaders recompiled without
affecting the program.
As shown in the figure above, after linking thegmaim, there is a function to actually load and use
the program, (ARB extensiog)UseProgramObjectARB, or (OpenGL 2.0ylUseProgram. Each
program is assigned an handler, and you can hawvaag programs linked and ready to use as you

want (and your hardware allows).

The syntax for this function is as follows (Open@&D notation):

void glUseProgram(GLuint prog);
Parameters:

prog - the handler to the program you want to asegro to return to fixed functionality

The syntax using the ARB extensions is as follows:

void glUseProgramObjectARB(GLhandleARB prog);
Parameters:

prog - the handler to the program you want to asegro to return to fixed functionality

If a program is in use, and it is linked agairwill automatically be placed in use again, so is th
case you don't need to call this function agaithdfparameter is zero then the fixed functionadity
activated.

OpenGL Setup for GLSL - Example

The following source code contains all the stedieed previously. The variablpd,v are
declared globally as (OpenGL 2.0 synt@tuint or (ARB extension syntax3LhandleARB.

OpenGL 2.0 syntax:

void setShaders() {
char *vs,*fs;

v = glCreateShader(GL_VERTEX_SHADER);
f = glCreateShader(GL_FRAGMENT_SHADER);

vs = textFileRead("toon.vert");
fs = textFileRead("toon.frag");

const char * vv = vs;
const char * ff = fs;

glShaderSource(v, 1, &vv,NULL);
glShaderSource(f, 1, &ff,NULL);

free(vs);free(fs);

glCompileShader(v);
glCompileShader(f);

p = glCreateProgram();

glAttachShader(p,v);
glAttachShader(p,f);

glLinkProgram(p);
glUseProgram(p);

ARB extension syntax:

void setShaders() {

char *vs,*fs;

v = glCreateShaderObjectARB(GL_VERTEX_SHADER_ARB) ;
f = glCreateShaderObjectARB(GL_FRAGMENT_SHADER_AR B);

vs = textFileRead("toon.vert");
fs = textFileRead("toon.frag");

const char * vv = vs;
const char * ff = fs;

glShaderSourceARB(v, 1, &vv,NULL);
glShaderSourceARB(f, 1, &ff,NULL);

free(vs);free(fs);

glCompileShaderARB(v);
glCompileShaderARB(f);

p = glCreateProgramObjectARB();

glAttachObjectARB(p,v);
glAttachObjectARB(p,f);

glLinkProgramARB(p);
glUseProgramObjectARB(p);

A complete GLUT example is availab@penGL 2.0 syntaandARB extension syntgxcontaining
two simple shaders, and the text file reading flamst A Unix version (ARB extension syntax
only) can be obtainelderethanks to Wojciech Milkowski. Please let him kndwou use it:
wmilkowski 'at' gazeta.pl

OpenGL Setup for GLSL - Troubleshooting: The InfoLog

Debugging a shader is hard. There ipnatf yet and probably never will be, although developer
tools with debugging capability are to be expeateithe future. It is true that you can use some
tricks now but these are not trivial by any meakibis not lost and some functions are provided to
check if your code compiled and linked successfully

The status of the compile steps can be queriegpenGL 2.0 with the following function:

void glGetShaderiv(GLuint object, GLenum type,iparam);
Parameters:
object - the handler to the object. Either a shader program

type - GL_COMPILE_STATUS.
param - the return value, GL_TRUE if OK, GL_FALSterwise.

The status of the link step can be queried in OpeRn@ with the following function:

void glGetProgramiv(GLuint object, GLenum type, fparam);
Parameters:

object - the handler to the object. Either a shader program
type - GL_LINK_STATUS.
param - the return value, GL_TRUE if OK, GL_FALSterwise.

With ARB extensions a single function is used teahboth the compile and link status (depending
on a parameter):

oid glGetObjectParameterivARB(GLhandleARB objedte@Bum type, int *param);
Parameters:

object - the handler to the object. Either a shader program
type - GL_OBJECT_LINK_STATUS_ARB or GL_OBJECT_COMI _STATUS_ARB.
param - the return value, 1 for OK, O for problems.

There are more options regarding the second paeaytgie, however these won't be explored in
here. Check out the 3Dlabge for the complete specification.

When errors are reported it is possible to geh&rrinformation with the InfoLog. This log stores
information about the last operation performedhsag warnings and errors in the compilation,
problems during the link step. The log can evelnytal if your shaders will run in software,

meaning your hardware does not support some fegtwree using, or hardware, the ideal situation.
Unfortunately there is no specification for thedbdg messages, so different drivers/hardware may
produce different logs.

In order to get the InfoLog for a particular shadeprogram in OpenGL 2.0 use the following
functions:

void glGetShaderinfoLog(GLuint object, int maxLamt, *len, char *log);
void glGetPrograminfoLog(GLuint object, int maxLent *len, char *log);

Parameters:

object - the handler to the object. Either a shader program
maxLen - The maximum number of chars to retrievenfthe InfoLog.
len - returns the actual length of the retrievedllog.

log - The log itself.

Again, using the ARB extensions, a single funct®required to query both the shader and
program info logs:

void glGetinfoLogARB(GLhandleARB object, int maxLent *len, char *log);
Parameters:

object - the handler to the object. Either a shader program

maxLen - The maximum number of chars to retrievenfthe InfoLog.

len - returns the actual length of the retrievedllog.
log - The log itself.

The GLSL specification could have been nicer ireh&ou must know the length of the InfoLog to
retrieve it. To find this precious bit of informati use the following functions (in OpenGL
notation):

void glGetShaderiv(GLuint object, GLenum type,iparam);
void glGetProgramiv(GLuint object, GLenum type, fparam);

Parameters:
object - the handler to the object. Either a shader program

type - GL_INFO_LOG_LENGTH.
param - the return value, the length of the InfoLog

Once again the ARB syntax is simpler. Only one fiomcis required:

void glGetObjectParameterivARB(GLhandleARB obj&sLenum type, int *param);
Parameters:
object - the handler to the object. Either a shader program

type - GL_OBJECT_INFO_LOG_LENGTH_ARB.
param - the return value, the length of the InfoLog

The following functions can be used to print thatents of the infoLog in OpenGL 2.0:

void printShaderinfoLog(GLuint obj)

{
int infologLength = 0;

int charsWritten = 0;
char *infoLog;

glGetShaderiv(obj, GL_INFO_LOG_LENGTH,&infologLen gth);
if (infologLength > 0)

infoLog = (char *)malloc(infologLength);
glGetShaderinfoLog(obj, infologLength, &ch arsWritten, infoLog);
printf("%s\n",infoLog);
free(infoLog);
}
}

void printPrograminfoLog(GLuint obj)

{
int infologLength = 0;
int charsWritten = 0;
char *infoLog;

glGetProgramiv(obj, GL_INFO_LOG_LENGTH,&infologLe ngth);
if (infologLength > 0)

infoLog = (char *)malloc(infologLength);

glGetPrograminfoLog(obj, infologLength, &c harsWritten, infoLog);
printf("%s\n",infoLog);

free(infoLog);

Using the ARB extension the process is the sambdtir shaders and programs:

void printinfoLog(GLhandleARB obj)

{
int infologLength = 0;
int charsWritten = 0;
char *infoLog;

glGetObjectParameterivARB(obj, GL_OBJECT_INFO_ LOG_LENGTH_ARB,
&infologLength);

if (infologLength > 0)
infoLog = (char *)malloc(infologLength);
glGetinfoLogARB(obj, infologLength, &charsWritten , infoLog);

printf("%s\n",infoLog);
free(infoLog);

OpenGL Setup for GLSL - Cleaning Up

In a previousubsectiora function to attach a shader to a program wasepted. A function to
detach a shader from a program is also available.

The OpenGL 2.0 syntax is as follows:

void glDetachShader(GLuint program, GLuint shader);
Parameter:
program - The program to detach from.

shader - The shader to detach.

And the ARB extension syntax is:

void glDetachObjectARB(GLhandleARB program, GLha#RB shader);
Parameter:
program - The program to detach from.

shader - The shader to detach.

Only shaders that are not attached can be delettdssoperation is not irrelevant. To delete a
shader, or a program, in OpenGL 2.0, use the fatigiunctions:

void glDeleteShader(GLuint id);
void glDeleteProgram(GLuint id);

Parameter:

id - The handler of the shader or program to delete

When using the ARB extensions, there is a singhetfan to delete both shaders and programs:

void glDeleteObjectARB(GLhandleARB id);

Parameter:

id - The handler of the shader or program to delete

In the case of a shader that is still attacheaioes(one or more) programs, the shader is not
actually deleted, but only marked for deletion. Tedete operation will only be concluded when
the shader is no longer attached to any programit has been detached from all programs it was
attached to.

OpenGL Setup for GLSL - Communication OpenGL ->
Shaders

An application in OpenGL has several ways of comicating with the shaders. Note that this is a
one way communication though, since the only outiuh a shader is to render to some targets,
usually the color and depth buffers.

The shader has access to part of the OpenGL #iatefore when an application alters this subset
of the OpenGL state it is effectively communicatimigh the shader. So for instance if an
application wants to pass a light color to the gindidcan simply alter the OpenGL state as it is
normally done with the fixed functionality.

However, using the OpenGL state is not always thstamtuitive way of setting values for the
shaders to act upon. For instance consider a skizaterequires a variable to tell the elapsed tione
perform some animation. There is no suitable navagdble in the OpenGL state for this purpose.
True, you can use an unused lights specular cataffe for this but it is highly counterintuitive.

Fortunately, GLSL allows the definition of user idef variables for an OpenGL application to
communicate with a shader. Thanks to this simgéufe you can have a variable for time keeping
appropriately calletimeElapsed, or some other suitable name.

In this context, GLSL has two types of variable I§ies (more qualifiers are available to use
inside a shader as detaileddata Types and Variables subsec}ion

« Uniform
- Attribute

Variables defined in shaders using these qualiieesead-only as far as the shader is concerned. |
the following subsections the details of how, areivto use these types of variables are detailed.

There is yet another way of sending values to gisadsing textures. A texture doesn't have to
represent an image; it can be interpreted as ay afrdata. In fact, using shaders you're the one
who decides how to interpret your textures datanpavhen it is an image. The usage of textures is
not explored in this section since it is out offze0

OpenGL Setup for GLSL - Uniform Variables

A uniform variable can have its value changed bmjpive only, i.e., its value can't be changed
between @lBegin / glEnd pair. This implies that it can't be used for &8 attributes. Look for the
subsection oattribute variablef that is what you're looking for. Uniform varilgs are suitable for
values that remain constant along a primitive, aor even the whole scene. Uniform variables
can be read (but not written) in both vertex argfnent shaders.

The first thing you have to do is to get the memopation of the variable. Note that this
information is only available after you link theogram. Note: with some drivers you may be
required to be using the program, i.e. you'll hieveall (openGL 2.0ylUseProgram or (ARB
extensionsylUseProgramObjectARB before attempting to get the location (it happerte my
laptop ATI graphics card).

The syntax for OpenGL 2.0 and ARB extensions iy genilar when dealing with variables.
BSasically just drop the "ARB" from the name of thaction if moving from an ARB extension
application to an OpenGL 2.0 application.

The function to retrieve the location of an unifovariable given its name, as defined in the shader,
is (OpenGL 2.0 syntax):

GLint glGetUniformLocation(GLuint program, constactfname);
Parameters:
program - the handler to the program

name - the name of the variable.

And using ARB extensions:

GLint glGetUniformLocationARB(GLhandleARB programpnst char *name);
Parameters:
program - the handler to the program

name - the name of the variable.

The return value is the location of the variablajck can then be used to assign values to it. A
family of functions is provided for setting uniformariables, its usage being dependent on the data
type of the variable. A set of functions is defifedsetting float values as (OpenGL 2.0 notation):

void glUniform1f(GLint location, GLfloat vO);

void glUniform2f(GLint location, GLfloat vO, GLfldavl);

void glUniform3f(GLint location, GLfloat vO, GLflaavl, GLfloat v2);

void glUniform4f(GLint location, GLfloat vO, GLflaavl, GLfloat v2, GLfloat v3);
or

GLint glUniform{1,2,3,4}v(GLint location, GLsizecount, GLfloat *v);

Parameters:

location - the previously queried location.
vO,v1,v2,v3 - float values.

count - the number of elements in the array
v - an array of floats.

Using the ARB extensions:

void glUniform1fARB(GLint location, GLfloat v0);

void glUniform2fARB(GLint location, GLfloat vO, Glléat v1);

void glUniform3fARB(GLint location, GLfloat vO, Glléat v1, GLfloat v2);

void glUniform4fARB(GLint location, GLfloat vO, Glldat v1, GLfloat v2, GLfloat v3);

or
GLint glUniform{1,2,3,4}fvARB(GLint location, GLsiei count, GLfloat *v);
Parameters:

location - the previously queried location.
vO,v1,v2,v3 - float values.

count - the number of elements in the array
v - an array of floats.

A similar set of function is available for data &jpteger, where "f" is replaced by "i". There are no
functions specifically for bools, or boolean vestalust use the functions availableffoat or

integer and set zero for false, and anything else for. tiuease you have an array of uniform
variables the vector version should be used.

For sampler variables, use the functions (OpenGL 2.0 notatibdjiformli, or glUniformliv if
setting an array of samplers.

When using the ARB extenstions use the functglhiiformliARB, or glUniformlivARB if setting
an array of samplers.

Matrices are also an available data type in GL®M, @set of functions is also provided for this
data type:

GLint glUniformMatrix{2,3,4}v(GLint location, GLstei count, GLboolean transpose, GLfloat
*V);

Parameters:
location - the previously queried location.

count - the number of matrices. 1 if a single magibeing set, on for an array oh
matrices.

transpose - wheter to transpose the matrix valueslue of 1 indicates that the matrix
values are specified in row major order, zero ismm major order
v - an array of floats.

And using the ARB extensions:

GLint glUniformMatrix{2,3,4}fvARB(GLint location, G_sizei count, GLboolean transpose,
GLfloat *v);

Parameters:

location - the previously queried location.

count - the number of matrices. 1 if a single magibeing set, on for an array oh
matrices.

transpose - wheter to transpose the matrix valueslue of 1 indicates that the matrix
values are specified in row major order, zero ismm major order

v - an array of floats.

An important note to close this subsection, andtee$ome source code is presented: the values
that are set with these functions will keep thailues until the program is linked again. Once a new
link process is performed all values will be rasetero.

And now to some source code. Assume that a shattethe following variables is being used:

uniform float specintensity;
uniform vec4 specColor;
uniform float t[2];

uniform vec4 colors[3];

In an OpenGL 2.0 application, the code for setthrgvariables could be:

GLint loc1,loc2,loc3,loc4;

float specintensity = 0.98;

float sc[4] = {0.8,0.8,0.8,1.0};

float threshold[2] = {0.5,0.25};

float colors[12] = {0.4,0.4,0.8,1.0,
0.2,0.2,0.4,1.0,
0.1,0.1,0.1,1.0};

locl = glGetUniformLocation(p,"speclntensity");
glUniform1f(locl,specintensity);

loc2 = glGetUniformLocation(p,"specColor");
glUniform4fv(loc2,1,sc);

loc3 = glGetUniformLocation(p,"t");
glUniform1fv(loc3,2,threshold);

loc4 = glGetUniformLocation(p,"colors");
glUniform4fv(loc4,3,colors);

If the application uses ARB extensions then theeaamlild be as follows:

GLint loc1,loc2,loc3,loc4;

float speclintensity = 0.98;

float sc[4] = {0.8,0.8,0.8,1.0};

float threshold[2] = {0.5,0.25};

float colors[12] = {0.4,0.4,0.8,1.0,
0.2,0.2,0.4,1.0,
0.1,0.1,0.1,1.0}

locl = glGetUniformLocationARB(p,"specintensity");
glUniform1fARB(locl,specintensity);

loc2 = glGetUniformLocationARB(p,"specColor");
glUniform4fvARB(loc2,1,sc);

loc3 = glGetUniformLocationARB(p,"t");
glUniform1fvARB(loc3,2,threshold);

loc4 = glGetUniformLocationARB(p,"colors");
glUniform4fvARB(loc4,3,colors);

A working example, with source code, is availalidenGL 2.0 syntawr ARB syntax

Notice the difference between setting an arrayaddies, as it is the casetadr colors, and setting a
vector with 4 values, as tlspecColor. Thecount parameter (middle parameter of
olGetUniform{1,2,3,4}fv) specifies the number of array elements as detiarthe shader, not as
declared in the OpenGL application. So althogggrColor contains 4 values, tle@unt of the
functionglUniformafv parameter is set to 1, because it is only oneove8h alternative for setting
the specColor variable could be:

loc2 = glGetUniformLocation(p,"specColor");
glUniform4f(loc2,sc[0],sc[1],sc[2],sc[3]);

Yet another possibility provided by GLSL is to ¢fe¢ location of a variable inside an array. For
instance, it is possible to get the location of.t[he following snippet of code shows this apptoac
to set the array elements.

loct0 = glGetUniformLocation(p,"t[0]");
glUniform1f(loct0,threshold[0]);

loctl = glGetUniformLocation(p,"t[1]");
glUniform1f(loctl,threshold[1]);

Notice how the variable is specifiedghGetUniformLocation using the square brackets.

The ARB extensions variant to the code above ig senilar (just add "ARB" to the functions
names) so it has been ommited in here.

OpenGL Setup for GLSL - Attribute Variables

As mentioned in subsectidniform, uniform variables can only be set by primitive,,ithey can't
be set inside glBegin-glEnd.

If it is required to set variables per vertex tlagnibute variables must be used. In fact attribute
variables can be updated at any time. Attributéabdées can only be read (not written) in a vertex
shader. This is because they contain vertex datayehnot applicable directly in a fragment shader
(see the section araryingvariables). As founiform variables, first it is necessary to get the
location in memory of the variable. Note that thegvam must be linked previously and some
drivers may require that the program is in use.

In OpenGL 2.0 use the following function:

GLint glGetAttribLocation(GLuint program,char *naine
Parameters:
program - the handle to the program.

name - the name of the variable

And with the ARB extensions use:

GLint glGetAttribLocationARB(GLhandleARB programah*name);
Parameters:
program - the handle to the program.

name - the name of the variable

The variable's location in memory is obtained &sréturn value of the above function. The next
step is to specify a value for it, potentially pertex. As in theuniform variables, there is a
function for each data type.

OpenGL 2.0 syntax:

void glVertexAttrib1f(GLint location, GLfloat v0);

void glVertexAttrib2f(GLint location, GLfloat vO, (Hloat v1);

void glVertexAttrib3f(GLint location, GLfloat vO, float v1,GLfloat v2);

void glVertexAttrib4f(GLint location, GLfloat vO, Hloat v1,,GLfloat v2, GLfloat v3);

or
GLint glVertexAttrib{1,2,3,4}v(GLint location, GLioat *v);
Parameters:

location - the previously queried location.

vO,v1,v2,v3 - float values.
v - an array of floats.

ARB extensions syntax:

void glVertexAttrib1fARB(GLint location, GLfloat vl

void glVertexAttrib2fARB(GLint location, GLfloat vOGLfloat v1);

void glVertexAttrib3fARB(GLint location, GLfloat vOGLfloat v1,GLfloat v2);

void glVertexAttrib4fARB(GLint location, GLfloat vOGLfloat v1,,GLfloat v2, GLfloat v3);

or
GLint glVertexAttrib{1,2,3,4}{vARB(GLint location,GLfloat *v);
Parameters:

location - the previously queried location.

vO,v1,v2,v3 - float values.
v - an array of floats.

A similar set of functions is provided fomtegers and some other data types. Note that the vector
version is not available for arrays as is the cdgaiform variables. The vector version is just an
option to submit the values of a single attribuaeable. This is similar to what happens in OpenGL
with glColor3f andglColor 3fv.

A small example is now provided. It is assumed thatvertex shader declare a float attribute
namedheight. The setup phase, to be performed after prognakridi

loc = glGetAttribLocation(p,"height"):;

In the rendering function the code could be somethike:

glBegin(GL_TRIANGLE_STRIP);

glVertexAttrib1f(loc,2.0);
glVertex2f(-1,1);

glVertexAttrib1f(loc,2.0);
glVertex2f(1,1);

glVertexAttrib1f(loc,-2.0);
glVertex2f(-1,-1);

glVertexAttrib1f(loc,-2.0);
glVertex2f(1,-1);

glEnd();

The source code for the ARB extensions is verylamust add "ARB" to the functions.

The source code for a small working example islalib: ARB extension syntarr OpenGL 2.0
syntax

Vertex Arrays can also be used together with attelvariables. The first thing to be done is to
enable the arrays. To do this for an attributeyansse the following function (OpenGL 2.0 syntax):

void glEnableVertexAttribArray(GLint loc);
Parameters:

loc - the location of the variable.

And using the ARB extensions:

void glEnableVertexAttribArrayARB(GLint loc);

Parameters:

loc - the location of the variable.
Next the pointer to the array with the data is pfed using the following functions.

OpenGL 2.0 syntax:

void glVertexAttribPointer(GLint loc, GLint size, @num type, GLboolean normalized, GLsizeli
stride, const void *pointer);

Parameters:

loc - the location of the variable.

size - the number of components per element, &iancte: 1 for float; 2 for vec2; 3 for vec3,
and so on.

type - The data type associated: GL_FLOAT is amgla.

normalized - if set to 1 then the array values ba&lnormalized, converted to a range from -
1 to 1 for signed data, or O to 1 for unsigned data

stride - the spacing between elements. Exactlgainee as in OpenGL.

pointer - pointer to the array containing the data.

ARB extensions syntax:

void glVertexAttribPointerARB(GLint loc, GLint siz&Lenum type, GLboolean normalized,
GLsizei stride, const void *pointer);

Parameters:

loc - the location of the variable.

size - the number of components per element, &iancte: 1 for float; 2 for vec2; 3 for vec3,
and so on.

type - The data type associated: GL_FLOAT is ample.

normalized - if set to 1 then the array values bd@lnormalized, converted to a range from -
1 to 1 for signed data, or O to 1 for unsigned data

stride - the spacing between elements. Exactlgdinee as in OpenGL.

pointer - pointer to the array containing the data.

And now to some source code. First the initialmatstep. Two arrays are considered, the vertex
and attribute arrays. It is assumed that the viartaddghts is declared with appropriate scope, i.e.
accessible both in here as well as when rendering.

float vertices[8] ={-1,1, 1,1, -1,-1, 1,-1};
float heights[4] = {2,2,-2,-2};

loc = glGetAttribLocation(p,"height");

glEnableClientState(GL_VERTEX_ARRAY);
glEnableVertexAttribArray(loc);

glVertexPointer(2,GL_FLOAT,0,vertices);
glVertexAttribPointer(loc,1,GL_FLOAT,0,0,heights);

Rendering is exactly the same as before (OpenGhowitshaders), just cajlDrawArrays for
example. A small demo source code is availahRB extensions syntagr OpenGL 2.0 syntax

Data Typesand Variables

The following simple data types are available inSEL

o float
« bool
o int

Float and int behave just like in C, whereas thal bgpe can take on the values of true or false.

Vectors with 2,3 or 4 components are also availédrleach of the simple data types mentioned
above. These are declared as:

« vec{2,3,4} a vector of 2,3,or 4 floats
- bvec{2,3,4} bool vector
+ ivec{2,3,4} vector of integers

Square matrices 2x2, 3x3 and 4x4 are provided sheeare heavily used in graphics. The
respective data types are:

« mat2
« mat3
« matd

A set of special types are available for textureeas. These are called samplers and are required to
access texture values, also known as texels. Tiagyjzes for texture sampling are:

« samplerlD - for 1D textures

« sampler2D - for 2D textures

- sampler3D - for 3D textures

« samplerCube - for cube map textures
« samplerlDShadow - for shadow maps
« sampler2DShadow - for shadow maps

In GLSL, arrays can be declared using the samesyat in C. However arrays can't be initialized
when declared. Accessing array's elements is done@

Structures are also allowed in GLSL. The syntahéssame as C.

struct dirlight {
vec3 direction;
vec3 color;

Variables

Declaring a simple variable is pretty much the sas@ C, you can even initialize a variable when
declaring it.

float a,b; I/l two vector (yes, the comments are | ike in C)
intc=2; /I ¢ is initialized with 2
bool d = true; // d is true
Declaring the other types of variables follows slaene pattern, but there are differences between

GLSL and C regarding initialization. GLSL reliesawv@dy on constructor for initialization and type

casting.
float b = 2; Il incorrect, there is no automatic type casting
float e = (float)2;// incorrect, requires construc tors for type casting
inta=2;

float c = float(a); // correct. c is 2.0

vec3 f; // declaring f as a vec3
vec3 g = vec3(1.0,2.0,3.0); // declaring and initi alizing g

GLSL is pretty flexible when initializing variablesing other variables. All that it requires isttha

you provide the necessary number of componentsk hothe following examples.
vec2 a = vec2(1.0,2.0);
vec2 b = vec2(3.0,4.0);

vec4 c = vec4(a,b) // c =vec4(1.0,2.0,3.0,4.0);

vec2 g = vec2(1.0,2.0);
float h = 3.0;

vec3 j = vec3(g,h);
Matrices also follow this pattern. You have a widgiety of constructors for matrices. For instance

the following constructors for initializing a matrare available:
mat4 m = mat4(1.0) // initializing the diagonal of the matrix with 1.0

vec2 a = vec2(1.0,2.0);
vec2 b = vec2(3.0,4.0);

mat2 n = mat2(a,b); // matrices are assigned in co lumn major order

mat2 k = mat2(1.0,0.0,1.0,0.0); // all elements ar e specified

The declaration and initialization of structuresl@&@nonstrated below:
struct dirlight { /I type definition
vec3 direction;
vec3 color;

h
dirlight d1;
dirlight d2 = dirlight(vec3(1.0,1.0,0.0),vec3(0.8, 0.8,0.4));
In GLSL a few extras are provided to simplify owek, and make the code a little bit clearer.

Accessing a vector can be done using letters dsawstandard C selectors.
vec4 a = vec4(1.0,2.0,3.0,4.0);

float posX = a.x;
float posY = a[1];

vec2 posXY = a.xy;

float depth = a.w
As shown in the previous code snippet, it is pdedib use the letters x,y,z,w to access vectors
components. If you're talking about colors therbragcan be used. For texture coordinates the
available selectors are s,t,p,q. Notice that byeation, texture coordinates are often referred as

s,t,r,q. However is already being used as a selector for "red"@BR. Hence there was a need to
find a different letter, and the lucky one was

Matrix selectors can take one or two argumentsingtance m[0], or m[2][3]. In the first case the
first column is selected, whereas in the secondgleselement is selected.

As for structures the names of the elements o$tihesture can be used as in C, so assuming the
structures described above the following line afeegould be written:

d1.direction = vec3(1.0,1.0,1.0);

Variable Qualifiers
Qualifiers give a special meaning to the variablee following qualifiers are available:

« const - The declaration is of a compile time camista

- attribute - Global variables that may change petexethat are passed from the OpenGL
application to vertex shaders. This qualifier catyde used in vertex shaders. For the
shader this is a read-only variable. 3digibute section

« uniform - Global variables that may change per i@ (may not be set inside
glBegin,/glEnd), that are passed from the OpenQGiliegition to the shaders. This qualifier
can be used in both vertex and fragment shadersh&shaders this is a read-only variable.
SeeUniform section

« varying - used for interpolated data between aexeshader and a fragment shader.
Avalilable for writing in the vertex shader, anddeanly in a fragment shader. Séarying
section.

Statements and Functions

Control Flow Statements

The available options are pretty much the sama &s There are conditional statements, like if-
else, iteration statements like for, while and duiler

if (bool expression)

else

for (initialization; bool expression; loop express ion)
while (bool expression)

do

while (boc;i'expression)

Although these are already available in the speatifon of GLSL, only théf statement is
commonly available in current hardware.

A few jumps are also defined:

« continue - available in loops, causes a jump tathé iteration of the loop
« break - available in loops, causes an exit of tlog |
+ discard

The discard keyword can only be used in fragmeatists. It causes the termination of the shader
for the current fragment without writing to therfra buffer, or depth.

Functions

As in C a shader is structured in functions. Astezach type of shader must have a main function
declared with the following syntax:

void main()
User defined functions may be defined. As in Crecfion may have a return value, and should use
the return statement to pass out its result. Atfancan be void of course. The return type can
have anytype but it can't be an array.

The parameters of a function have the followinglifjees available:

« in - for input parameters

« out - for outputs of the function. The return sta¢at is also an option for sending the result
of a function.

« inout - for parameters that are both input and wudy a function

If no qualifier is specified, by default it is cadered to ben.
A few final notes:

- 1. A function can be overloaded as long as thefiparameters is different.
« 2. Recursion behavior is undefined by specification

An example of a function concludes this subsection.
vec4 toonify(in float intensity) {

vec4 color;

if (intensity > 0.98)

color = vec4(0.8,0.8,0.8,1.0);
else if (intensity > 0.5)

color = vec4(0.4,0.4,0.8,1.0);
else if (intensity > 0.25)

color = vec4(0.2,0.2,0.4,1.0);
else

color = vec4(0.1,0.1,0.1,1.0);

return(color);

Varying Variables

As mentioned before we have two types of shadersex and fragment shaders. In order to
compute values per fragment it is often requireddoess vertex interpolated data. For instance,
when performing lighting computation per fragmewmg, need to access the normal at the fragment.
However in OpenGL, the normals are only specifiedyertex. These normals are accessible to the
vertex shader, but not to the fragment shader shmecome from the OpenGL application as an
attributevariable.

After the vertices, including all the vertex dadee processed they move on to the next stage of the
pipeline(which still remains fixed functionality) where moectivity information is available. It is in
this stage that the primitives are assembled aghfents computed. For each fragment there is a
set of variables that are interpolated automaticaild provided to the fragment shader. An example
is the color of the fragment. The color that arsia the fragment shader is the result of the
interpolation of the colors of the vertices thatkmap the primitive.

This type of variables, where the fragment receintsgpolated, data are "varying variables". GLSL
has some predefined varying variables, such aalibee mentioned color. GLSL also allows user
defined varying variables. These must be declardubth the vertex and fragment shaders, for
instance:

varying float intensity;
A varying variable must be written on a vertex sravhere we compute the value of the variable

for each vertex. In the fragment shader the vagiabhose value results from an interpolation of the
vertex values computed previously, can only be.read

Shader Examples

Hello World

This pair of vertex/fragment shaders is about thalkest pair we can write.
It performs only the standard vertex transformateond sets the same color
for all pixels. It shows several ways of achievihg vertex transformation,
and introduces the some of the matrices providedadbie in GLSL.

Color Shader

A simple example of how to get the color specifiedn OpenGL
application, usingjlColor, all the way to the fragment shader.

Flatten Shader

This is a simple example of vertex manipulatiorstétrts out by flattening a
teapot, and it ends up with a vertex shader thatates a wavy teapot,
based on a uniform variable to keep track of time.

Toon Shader

In this tutorial it will be shown the impact of plag certain computations
on the vertex shader vs. the fragment shadere#t varying variables to
establish communication between shaders, and showgo access an
OpenGL lights position.

Lighting Shaders

Lighting according to the "Mathematics of OpenGthdpter of the Red
Book) lighting is presented in here. The tutorsrts with a directional
light per vertex, i.e. as in OpenGL fixed functibtya and then moves on to
per pixel implementations of directional, point aspbt lights, all according
to the Red Book equations.

Texturing
This tutorial starts from basic texturing, accegdexture coordinates and

texels, and moves on to a multitexturing examplengtone of the texture
units is applied to give a glow in the dark effect.

HelloWorld in GLSL

This is kind of a Hello World for GLSL. A minimahader that performs the most basic tasks:
transform the vertices and render the primitivea sgingle color. In here it this shaders, vertex an
fragment, are presented.

Vertex Shader

As mentionedefore a vertex shader is responsible for transformiiregvertices. In here it will be
shown how to transform the vertices following tlggi&tions for the fixed functionality.

The fixed functionality states that a vertex iv#otransformed by the modelview and projection
matrices using the following equation:

vTrans = projection * modelview * incomingVertex

In order to write such a statement in GLSL it isessary to access the OpenGL state to retrieve
both matrices. As mentioned before, part of ther@destate is accessible in GLSL, namely the
above mentioned matrices. The matrices are provigedgh predefinedniform variables

declared as:
uniform mat4 gl_ModelViewMatrix;
uniform mat4 gl_ProjectionMatrix;

One more thing is needed: to access the incomirigx€lhese vertices are suplied, one by one, to

the vertex shader through a predefiagtdbutevariable:
attribute vec4 gl_Vertex;

In order to output the transformed vertex, the shasustwrite to the also predefined variable
gl_Position, declared as a vec4.

Given the above, it is now possible to write aeerthader that will do nothing more than
transform vertices. Note that all other functiotyalill be lost, meaning, for instance, that ligigi
computations will not be performed.

The vertex shader has to have a main function falleving code does the trick:

void main()

{

gl_Position = gl_ProjectionMatrix * gl_ModelViewM atrix *
gl_Vertex;
}

In the above code, the projection matrix is mulkiglby the modelview matrix for every vertex,
which is a clear waste of time since these matuoesot change per vertex. The matrices are
uniform variables.

GLSL provides some derived matrices, namelydh&odel ViewProjectionMatrix that is the result
of multiplying the above matrices. So the verteaddr could be written as:

void main()
{

gl_Position = gl_ModelViewProjectionMatrix * gl_V ertex;
}

The end result is of course the same. Does thisagtee the same transformation as in the fixed
functionality? Well in theory yes, but in practite process of transforming the vertices may not
follow the same order as in here. This is normalhighly optimized task in a graphic card, and a
special function is provided to take advantagehat bptimization. Another reason for this function
is due to the limit in the precision of the floata type. When calculus is done in different orders
different results may be obtained due to this kahiprecision. Hence the GLSL provides a function
that guarantees that not only the best performenaktained but also that the result is always the
same as when using the fixed functionality. Thigira function is:

vec4 ftransform(void);
This function returns the transformed incoming eesfollowing the same steps as the fixed
functionality does. The shader could then be réenias:

void main()

{

gl_Position = ftransform();

Fragment Shader

The fragment shader also has a predefined variameite the color of the fragment:
gl_FragColor. As in the case of vertex shaders, fragment skadast also have a main function.
The following code is for a fragment shader thain all fragments in a bluish color:

void main()

gl_FragColor = vec4(0.4,0.4,0.8,1.0);

The source code for this example can be obtainéedre:ARB extensions syntaar OpenGL 2.0
syntax

Color Shader

GLSL has access to part of the OpenGL state. stthorial we'll see how to access the color as set
in an OpenGL application withiColor.

GLSL has amttributevariable where it keeps track of the current cdkoalso provideyarying
variables to get the color from the vertex shadehé fragment shader

attribute vec4 gl_Color;

varying vec4 gl_FrontColor; // writable on the ver tex shader
varying vec4 gl_BackColor; // writable on the vert ex shader
varying vec4 gl_Color; // readable on the fragment shader

The idea is as follows:

The OpenGL applications sends a color using thelgiGunction

The vertex shader receives the color value irattréoutegl_Color

The vertex shader computes the front face and famekcolors, and stores them in

gl_FrontColor, and gl_BackColor respectively

4. The fragment shader receives an interpolated oolihrevaryingvariable gl_Color,
depending on the orientation of the current prieiti.e. the interpolation is done using
either the gl_FrontColor or the gl_BackColor values

5. The fragment shader sets gl_FragColor based ovethe of gl_Color

wnN e

This is an exception to the "rule" whergayingvariable should be declared with the same name
both in the vertex shader and the fragment shddherconcept in here is that we have two variables
in the vertex shader, namedly FrontColor andgl_BackColor, and these are used to derive
automatically the value of gl_Color depending ia trientation of the current face. Note that there
is no conflict between thattributegl_Color and the@aryingvariable gl_Color, since the former is
visible only in the vertex shader, and the lattethie fragment shader.

Enough talk, the code for the vertex shader, wbahg the front face color is computed is:

void main()
{
gl_FrontColor = gl_Color;

gl_Position = ftransform();

The fragment shader is also a very simple shader:

void main()

{
}

gl_FragColor = gl_Color;

Source code based on GLUT and GLEW is availableie:ARB extensions syntagr OpenGL
2.0 syntax

Flatten Shader

Shader programming sets us free to explore newtsff€his is a small example just to show that
with shader programming vertices can be manipulaatrange ways.

First we're going to flatten a 3D model, by setiitsgz coordinate to zero prior to applying the
modelview transformation. The source code for thidex shader is:

void main(void)

{

vecd v = vec4(gl_Vertex);

v.z = 0.0;

gl_Position = gl_ModelViewProjectionMatrix * v;
}

First notice that we had to copy thle Vertex variable to a local variable. Tlge Vertex is an
attributevariable provided by GLSL, and hence it is a realy variable as far as the vertex shader
is concerned. Hence to change the values of tloemimg vertex coordinates we had to copy it first
to the local variable.

The fragment shader only sets a color, so it'schlgithe same as the one presented irHtbl&®
World section.

This shader sets the z coordinate of each vertxgtprocessed to zero. When applied to the
teapot, the result is something like the followpigtures taken around the flattened teapot:

& & PV

OK, let's play some more, now we're going to agp$me function to the z coordinate, as a
function of the x coordinate, so the teapot appeans,.

void main(void)

{

vecd v = vec4(gl_Vertex);

v.z = sin(5.0*v.x)*0.25;

gl_Position = gl_ModelViewProjectionMatrix * v;
}

@ -,

And finally to end this simple example we're gotogadd some vertex animation. In order to do
this we need a variable to keep track of time, fsame counter. A vertex shader can't keep track of
values between vertices, let alone between frafrteefore we need to define this variable in the
OpenGL application, and pass it to the shaderuasfarm variable. Let's assume that there is a
frame counter in the OpenGL application named "tjraad that in the shader there isuariform
attribute with the same name.

The code for the vertex shader becomes somettkeg li

uniform float time;
void main(void)
{ vecd v = vec4(gl_Vertex);
v.z = sin(5.0*v.x + time*0.01)*0.25;

gl_Position = gl_ModelViewProjectionMatrix * v;

As mentioned in th&niform Variablessection, in the OpenGL application two steps aggired:

+ setup: getting the location of the uniform variable
« render: update the uniform variable

The setup phase is only:
loc = glGetUniformLocationARB(p,"time");

Where p is the handler to the program, and "tirm¢hé name of the uniform variable as defined in
the vertex shader. The varialbde is of type GLint and should be defined in a platere it is also
accessible to the render function.

The render function could be something like:

void renderScene(void) {
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT),
glLoadldentity();
gluLookAt(0.0,0.0,5.0,
0.0,0.0,0.0,
0.0f,1.0f,0.0f);
glUniform1fARB(loc, time);

glutSolidTeapot(1);
time+=0.01;

glutSwapBuffers();

where the variablgéme is initialized to some value in the initializaticemnd is incremented in each
frame.

The source code for this last example, togethdr thie shaders can be obtained in hafeB
extensions syntagr OpenGL 2.0 syntax

Note: you'll need to havglew to run this. AShader Designgsroject is also available imere A
mpeg showing the effect can be downloaldeck This video was produced using a feature on
Shader Designéhat creates an AVI movie, and afterwards it wasverted to MPEG usinigx
Mpeg Writer Free version

Toon Shading

Toon shading is probably the simplest non-phot@galshader we can write. It uses very few
colors, usually tones, hence it changes abruptiy flone to tone, yet it provides a sense of 3D to
the model. The following image shows what we'rengyto achieve.

The tones in the teapot above are selected bastée @mgle, actually on the cosine of the angle,
between a virtual light's direction and the norwfahe surface.

So if we have a normal that is close to the ligllitection, then we'll use the brightest tone. e t
angle between the normal and the light's diredticreases darker tones will be used. In other
words, the cosine of the angle provides an intgiigitthe tone.

In this tutorial we'll start with a version thatraputes the intensity per vertex. Then we will move
this computation to the fragment shader. It wiicabe shown how to access OpenGL light's
position.

Toon Shading - Version |

The first version presented in here computes amsity per vertex. Then the fragment shader uses
the vertex interpolated intensity to compute a tlamehe fragment. The vertex shader must
therefore declareaaryingvariable to store the intensity. The fragment ghawust declare the

same variable, also using the varying qualifiergiteive the properly interpolated value for the
intensity.

The light direction could be defined in the versiyader as a local variable or as a constant,
however having it as aniform variable provides more freedom since it can bad®trarily on the
OpenGL application. The light's direction variabld be defined in the shader as

uniform vec3 lightDir;

For now, lets assume that the light's directiotened in world space.

The vertex shader has access to the normals, eifieppén the OpenGL application, through the
attributevariablegl_Normal. This is the normal as defined in the OpenGL ajagilbn with the
glNormal function, hence in model local space.

If no rotations or scales are performed on the rhiodihe OpenGL application, then the normal
defined in world space, provided to the vertex shasgl Normal, coincides with the normal
defined in the local space. The normal is a dioectind therefore it is not affected by translations

Because both the normal and the light's directrerspecified in the same space, the vertex shader
can jump directly to the cosine computation betwienlight's direction, i.dightDir, and the
normal, i.egl_Normal. The cosine can be computed using the followimmtda

cos(lightDir,normal) = lightDir . normal / (|ligh tDir| * |[normal|)

where "." is the inner product, aka as the dot pcbdThis can be simplified if both tige Normal
andlightDir are normalized, i.e.

| normal | =1
| lightDir | = 1
Hence if these two conditions are guaranteed thgatation for the cosine can be simplified to

cos(lightDir,normal) = lightDir . normal

Since the variablgghtDir is supplied by the OpenGL application we can asstirat it arrives at
the shader already normalized. It would be a walstene having to normalize it for every vertex,
instead of performing it only when the light direct changes. Also it is reasonable to expect that
the normals from the OpenGL application are norpeali

Therefore the cosine, which we will store in a able namedntensity, can be computed with the
dot function provided by GLSL.

intensity = dot(lightDir, gl_Normal);

The only thing that's left to do in the vertex séraid to transform the vertex coordinates. The
complete code for the shader is as follows:

uniform vec3 lightDir;
varying float intensity;

void main()
intensity = dot(lightDir,gl_Normal);

gl_Position = ftransform();

If you want to use the OpenGL variable for the tgghositiongl_LightSource] 0] .position, instead
of the uniformlightDir then you could use the following code:

varying float intensity;
void main()

vec3 lightDir = normalize(vec3(gl_LightSource[0]. position));

intensity = dot(lightDir,gl_Normal);

gl_Position = ftransform();

Now, in the fragment shader, all that's left taglto define a color for the fragment based on the
intensity. Thantensity must be passed on to the fragment shader, sircthi fragment shader that
is responsible for setting the colors for fragmeAts mentioned before, thetensity will be defined
as avaryingvariable on both shaders, hence it must be writt¢he vertex shader for the fragment
shader to read it.

The color can be computed in the fragment shadfailasvs:

vec4 color;

if (intensity > 0.95)

color = vec4(1.0,0.5,0.5,1.0);
else if (intensity > 0.5)

color = vec4(0.6,0.3,0.3,1.0);
else if (intensity > 0.25)

color = vec4(0.4,0.2,0.2,1.0);
else

color = vec4(0.2,0.1,0.1,1.0);

As can be seen from the code above, the brightést is used when the cosine is larger than 0.95
and the darker color is used for cosines smalkem th25. All there is left to do in the fragment
shader is to set tig¢_FragColor based on theolor. The code for the fragment shader is:

varying float intensity;
void main()
vec4 color;

if (intensity > 0.95)

color = vec4(1.0,0.5,0.5,1.0);
else if (intensity > 0.5)

color = vec4(0.6,0.3,0.3,1.0);
else if (intensity > 0.25)

color = vec4(0.4,0.2,0.2,1.0);
else

color = vec4(0.2,0.1,0.1,1.0);

gl_FragColor = color;

The following image shows the end result, and @it look very nice does it? The main problem
is that we're interpolating the intensity. Thisii the same as computing the intensity with the
proper normal for the fragment. Go on to the nextisn to see toon shading done properly!

Toon Shader - Version ||

GLSL has access to part of the OpenGL state. stthorial we'll see how to access the color as set
in an OpenGL application withiColor.

GLSL has arattributevariable where it keeps track of the current cdiothis section we will do
the toon shader effect per fragment. In order tthdd, we need to have access to the fragments
normal per fragment. Hence the vertex shader oadga to write the normal intovarying
variable, so that the fragment shader has accehs taterpolated normal.

The vertex shader gets simplified, since the coliensity computation will now be done in the
fragment shader. Theniform variablelightDir also has moved to the fragment shader, sincend is
longer used in the vertex shader. See the codevbédr the new vertex shader:

varying vec3 normal,
void main()
{

normal = gl_Normal;

gl_Position = ftransform();

In the fragment shader we now need to declareniferm variablelightDir since the intensity is
based on this variable. A varying variable is asfined to receive the interpolated normal. The
code for the fragment shader then becomes:

uniform vec3 lightDir;

varying vec3 normal,

void main()

float intensity;
vec4 color;

intensity = dot(lightDir,normal);

if (intensity > 0.95)

color = vec4(1.0,0.5,0.5,1.0);
else if (intensity > 0.5)

color = vec4(0.6,0.3,0.3,1.0);
else if (intensity > 0.25)

color = vec4(0.4,0.2,0.2,1.0);
else

color = vec4(0.2,0.1,0.1,1.0);

gl_FragColor = color;

And the result is:

No, its not a bug! Its the same result as ingevioussection. So what happened?

Let's look closely at the differences between the tersions. In the first version we computed an
intensity in the vertex shader and used the intatpd value in the fragment shader. In the second
version we interpolated the normal, in the vertexder, for the fragment shader where we
computed the dot product. Interpolation and dotlpod are both linear operations, so it doesn't
matter if we compute the dot product first and thearpolate, or if we interpolate first and then
compute the dot product.

What is wrong in here is the usage of the intetgdlaormal for the dot product in the fragment
shader! And it is wrong because the normal, althatigas the right direction, it most likely has a
not unit length.

We know that the direction is right because we m&slithat the normals that arrived at the vertex
shader were normalized, and interpolating normdlizztors, provides a vector with the correct
direction. However the length is wrong in the gahease because interpolating normalized

normals only yields a unit length vector if the maits being interpolated have the same direction,
which is highly unlikely in smooth surfaces. S¢&malization Issuefor more details.

The main reason to move the intensity computatiomfthe vertex shader to the fragment shader
was to compute it using the proper normal for tagrment. We have a normal vector that has the
correct direction but is not unit length. In ordeffix this all we have to do is to normalize the
incoming normal vector at the fragment shader. fbhewing code is the correct and complete toon
shader:

uniform vec3 lightDir;
varying vec3 normal;

void main()

{

float intensity;
vec4 color;

intensity = dot(lightDir,normalize(normal));

if (intensity > 0.95)

color = vec4(1.0,0.5,0.5,1.0);
else if (intensity > 0.5)

color = vec4(0.6,0.3,0.3,1.0);
else if (intensity > 0.25)

color = vec4(0.4,0.2,0.2,1.0);
else

color = vec4(0.2,0.1,0.1,1.0);

gl_FragColor = color;

The result for this version of the toon shaderapicted below. It looks nicer, yet it is not petfdt
suffers from aliasing, but this is outside the scopthis tutorial ;)

In the next section we will use an OpenGL lighs#ét the light's direction of the shader.

Toon Shading - Version |11

Before we finish this tutorial there is just onemnthing: we're going to use an OpenGL light
instead of the variable lightDir. In this way wenadefine a light in the OpenGL application and use
that light's direction in our shader. Note: it & mecessary to turn on the lights usghignable,

since we are not going to apply the light in OpenGL

We shall assume that the first light (GL_LIGHTO)tie OpenGL application is a directional light.

GLSL provides access to part of the OpenGL statmaty the lights properties. GLSL declares a C
type struct for the lights properties, and an atcastore these properties for each of the lights.

struct gl_LightSourceParameters {
vec4 ambient;
vec4 diffuse;
vec4 specular;
vec4 position;

b

uniform gl_LightSourceParameters gl_LightSource[gl_ MaxLights];

This means that we can access the light's dire¢tising theposition field of a directional light) in
the vertex shader. Again we shall assume thaighéd direction is normalized by the OpenGL
application.

The OpenGL specification states that when a ligisitpn is set it is automatically converted to eye
space coordinates, i.e. camera coordinates. Wassamme that the light position stays normalized
when automatically converted to eye space. Thikhailtrue if we the upper left 3x3 sub matrix of
the modelview matrix is orthogonal (this is ensufegle set the camera using gluLookAt, and we
don't use scales in our application).

We have to convert the normal to eye space codesires well to compute the dot product, as it
only makes sense to compute angles, or cosinéssicdse, between vectors in the same space, and
as mentioned before the light position is storedyia coordinates.

To transform the normal to eye space we will useptte-defined uniform variable mat3
gl_NormalMatrix. This matrix is the transpose of the inverse ef3k3 upper left sub matrix from
the modelview matrix. We will do the normal transhation per vertex. The vertex shader then
becomes:

varying vec3 normal;

void main()

{

normal = gl_NormalMatrix * gl_Normal,

gl_Position = ftransform();

In the fragment shader we must access the lightiposo compute the intensity:

varying vec3 normal;
void main()

float intensity;
vec4 color;
vec3 n = normalize(normal);

intensity = dot(vec3(gl_LightSource[0].position), n);

if (intensity > 0.95)

color = vec4(1.0,0.5,0.5,1.0);
else if (intensity > 0.5)

color = vec4(0.6,0.3,0.3,1.0);
else if (intensity > 0.25)

color = vec4(0.4,0.2,0.2,1.0);
else

color = vec4(0.2,0.1,0.1,1.0);

gl_FragColor = color;

A Shader Designesroject is available ihere Source code based on GLUT and GLEW is available
in here:ARB extensions syntagr OpenGL 2.0 syntax

Lighting

In OpenGL there are three types of lights: dire@lppoint, and spotlight. In this tutorial wetag
to implement a directional light. First we'll starith an implementation in GLSL that mimics the
OpenGL way of lighting.

We'll build the shader incrementally starting wattmbient light up to specular lighting.

Ambient Ambient + Diffuse Soecular

Then we'll move on to lighting per pixel in orderget better results.

Next we'll implement point and spot lights per pixiehese last tutorials are heavily based on the
directional lights tutorial because most of theeealcommon.

Point Light Soot Light

As mentioned in theoon shadetutorial GLSL offers access to the OpenGL sta# tiontains data
for the light setting. This data describes theviial light's setting as well as global parameters

struct gl_LightSourceParameters {
vec4 ambient;
vec4 diffuse;
vec4 specular;
vec4 position;
vec4 halfVector;
vec3 spotDirection;
float spotExponent;
float spotCutoff; // (range: [0.0,90.0], 180.0)
float spotCosCutoff; // (range: [1.0,0.0],-1.0)
float constantAttenuation;
float linearAttenuation;
float quadraticAttenuation;

h
uniform gl_LightSourceParameters gl_LightSource[g| _MaxLights];

struct gl_LightModelParameters {
vec4 ambient;
2

uniform gl_LightModelParameters gl_LightModel;

Material properties are accessible in GLSL as well:
struct gl_MaterialParameters {
vec4 emission;
vec4 ambient;
vec4 diffuse;
vec4 specular;
float shininess;

3

uniform gl_MaterialParameters gl_FrontMaterial;
uniform gl_MaterialParameters gl_BackMaterial;

Most of these parameters, both for lighting andemals are familiar to those used to build
applications in OpenGL. We shall use these progett implement our directional light.

OpenGL Directional Lights|

The equations in here are from the chapter "Theéhbhagtics of Lighting” from the book "OpenGL
Programming Guide", aka the Red Book.

We'll start with the diffuse term. The diffuse ligig in OpenGL assumes that the light is perceived
with the same intensity regardless if the viewearsifon. Its intensity is proportional to both the
lights diffuse intensity as well as material's dgé reflection coefficient. The intensity is also
proportional to the angle between the light dimttand the normal of the surface.

N

\)

The following formula is used in OpenGL to comptite diffuse term:

1, =L,*M,*cos(6)

where | is the reflected intensity, Ld is the ligidiffuse color @l _LightSource] 0] .diffuse), and Md
is the material's diffuse coefficiergl (FrontMaterial.diffuse).

This is known as Lambertian Reflection. '‘Lambertisine law' states that the brightness of a
diffusely radiating plane surface is proportiorathe cosine of the angle formed by the line of
sight and the normal to the surface. This was rtitae 200 years ago (Johann Heinrich Lambert,
1728-1777)!

The vertex shader to implement this formula wikk tise lights properties, namely its position, and
diffuse intensity. It will also use the materialffuse setting. Hence to use this shader justreet t
light as usual in OpenGL. Note however that sine&ewnot using the fixed functionality, there is
no need to enable the lights.

Since we need to compute a cosine, first we'reggmmmake sure that the normal vector and the
light direction vectordl_LightSource[0] .position) are normalized, and then we'll use ¢t
productto get the cosine. Note that, for directional iglfOpenGL stores the light direction as the
vector from the vertex to the light source, whislthe opposite to what is shown in the above
figure.

OpenGL stores the lights direction in eye spacedinates; hence we need to transform the normal
to eye space in order to compute the dot productransform the normal to eye space we will use

the pre-defined uniform variable mat3 gl_NormalMatmhis matrix is the transpose of the inverse
of the 3x3 upper left sub matrix from the modelvienatrix.

The following vertex shader shows the GLSL codadiieve this.

void main() {

vec3 normal, lightDir;

vec4 diffuse;

float NdotL;

[* first transform the normal into eye space and normalize the
result */

normal = normalize(gl_NormalMatrix * gl_Normal);

/* now normalize the light's direction. Note that according to
the

OpenGL specification, the light is stored in eye space. Also
since

we're talking about a directional light, the posi tion field is
actually

direction */

lightDir = normalize(vec3(gl_LightSource[0].posit ion));

/* compute the cos of the angle between the norma I and lights
direction.

The light is directional so the direction is cons tant for every
vertex.

Since these two are normalized the cosine is the dot product. We
also

need to clamp the result to the [0,1] range. */

NdotL = max(dot(normal, lightDir), 0.0);

/* Compute the diffuse term */

diffuse = gl_FrontMaterial.diffuse * gl_LightSour ce[0].diffuse;

gl_FrontColor = NdotL * diffuse;

gl_Position = ftransform();

}

Now in the fragment shader all there is left tagleetting the fragments color, using tlaying
gl_Color variable.

void main()

gl_FragColor = gl_Color;

The following image shows this shader applied ®tdapot. Note that the bottom of the teapot is
too dark. This is because we're not taking int@aatthe ambient lighting terms available in
OpenGL.

Incorporating the ambient terms is also easy toltiere is a global ambient term and a light
ambient term. The formula for the ambient termsisadlows:

f = Ga *M’a ‘I—La *M’a

a

The vertex shader needs to add a few instructmoermpute the ambient term:

void main()

{
vec3 normal, lightDir;
vec4 diffuse, ambient, globalAmbient;

float NdotL;

normal = normalize(gl_NormalMatrix * gl_Normal);

lightDir = normalize(vec3(gl_LightSource[0].posit ion));

NdotL = max(dot(normal, lightDir), 0.0);

diffuse = gl_FrontMaterial.diffuse * gl_LightSour ce[0].diffuse;

/* Compute the ambient and globalAmbient terms */

ambient = gl_FrontMaterial.ambient * gl_LightSour ce[0].ambient;
globalAmbient = gl_LightModel.ambient * gl_FrontM aterial.ambient;
gl_FrontColor = NdotL * diffuse + globalAmbient + ambient;

gl_Position = ftransform();

The following image shows the end result. Addingaanbient term washes out color, but it's a
cheap workaround for the lack of a global illumioatmodel where light bounces, and hence it
affects surfaces not directly affected by the ligitirce.

Move on to the next section for the specular coreptn

OpenGL Directional Lightsl|

Time for the specular component of the OpenGL timaal light. The lighting model used is the
Blinn-Phong model, which is a simplification of tRong model. We shall take a peek at the
Phong model since it makes it easier to underdtamé&linn-Phong model.

The Phong model says that the specular componendp®rtional to the cosine between the light
reflection vector and the eye vector. The followimgge shows this graphically:

L is the vector from the light to the vertex besitaded. N is the normal vector, and Eye is the
vector from the vertex to the eye, or camera. fRasvector L mirror reflected on the surface. The
specular component is proportional to the cosinatia.

If the eye vector coincides with the reflection iedhen we get the maximum specular intensity.
As the eye vector diverges from the reflection gethe specular intensity decays. The rate of
decay is controlled by a shininess factor. The éidhe shininess factor the faster the decay. This
means that with a high shininess the bright spesed by the specular component is smaller than
with a low shininess value. Simply put, the shisséa value between 0 and 128 in OpenGL)
controls the size of the bright spot.

Shininess= 8 Shininess = 64 Shininess = 128

The formula for the reflection vector is as follows
R=-2N(L-N)+L
And the specular component in OpenGL using the §oodel would be:
— . R -
Spec=(R-Eye) *L_*M,

Where thes exponent is the shininess value, Ls is the lightcular intensity, and Ms is the
materials specular coefficient.

Blinn proposed a simpler and faster model, knowtha®linn-Phong model that is based on the

half-vector. The half-vector is a vector with aetition half-way between the eye vector and the
light vector as shown in the following figure:

Eye

The intensity of the specular component is now thasethe cosine of the angle between the half
vector and the normal. The formula for the halfteecs much simpler than for the reflection
vector:

H=Fyve—L

And the specular component in OpenGL using therBRthong model is:

Spec=(N-HY *L *M,

This is the actual stuff as commonly used in tkedipipeline of the graphics hardware. Since we
want to emulate the OpenGL's directional light,revgoing to use this last equation in our shader.
There is a good news: OpenGL computes the halbvéat us! So the following snippet of code
should do the trick:

[* compute the specular term if NdotL is larger t han zero */
if (NdotL > 0.0) {

/ normalize the half-vector, and then compute th e

/I cosine (dot product) with the normal

NdotHV = max(dot(normal, gl_LightSource[0].halfVe ctor.xyz),0.0);
specular = gl_FrontMaterial.specular * gl_LightSo urce[0].specular

pow(NdotHV,gl_FrontMaterial.shininess);

The full source of the shaders, i®hader Designgsroject can be found inere

Directional Light per Pixel

In this section we'll modify the previous shadersdmpute the directional light per pixel. Basigall
we're going to split the work between the two shgdso that some operations are done per pixel.

First lets take a look at the information we reegper vertex:

« normal
- half vector
+ light direction

We have to transform the normal to eye space, amdalize it. We also have to normalize both the
half vector and the light direction, both of whiate already in eye space. These normalized vectors
are to be interpolated and then sent to the fragsteader so we need to declare varying variables
to hold the normalized vectors.

We can also perform some computations combiningighés settings with the materials in the
vertex shader, hence helping to split the load betwthe vertex and fragment shader.

The vertex shader could be:

varying vec4 diffuse,ambient;
varying vec3 normal,lightDir,halfVector;

void main()

{
[* first transform the normal into eye space and
normalize the result */
normal = normalize(gl_NormalMatrix * gl_Normal);

/* now normalize the light's direction. Note that
according to the OpenGL specification, the light
is stored in eye space. Also since we're talking about

a directional light, the position field is actual ly direction */

lightDir = normalize(vec3(gl_LightSource[0].posit ion));

/* Normalize the halfVector to pass it to the fra gment shader */
halfVector = normalize(gl_LightSource[0].halfVect or.xyz);

/* Compute the diffuse, ambient and globalAmbient terms */

diffuse = gl_FrontMaterial.diffuse * gl_LightSour ce[0].diffuse;
ambient = gl_FrontMaterial.ambient * gl_LightSour ce[0].ambient;
ambient += gl_LightModel.ambient * gl_FrontMateri al.ambient;

gl_Position = ftransform();

Now for the fragment shader. The same varying bégmhave to be declared. We have to
normalize again the normal. Note that there is@®drto normalize again the light direction. This
last vector is common to all vertices since wediking about a directional light. The interpolation
between two equal vectors yields the same veadhese is no need to normalize again. Then we
compute the dot product between the interpolatethalized normal and the light direction.

need

varying vec4 diffuse,ambient;
varying vec3 normal,lightDir,halfVector;

void main()

vec3 n,halfV,
float NdotL,NdotHV;

[* The ambient term will always be present */
vec4 color = ambient;

/* a fragment shader can't write a varying variab le, hence we

a new variable to store the normalized interpolat ed normal */
n = normalize(normal);

/* compute the dot product between normal and Idi r*/
NdotL = max(dot(n,lightDir),0.0);

If the dot produciNdotL is greater than zero then we must compute thasdiftomponent, which is
the diffuse setting we received from the vertexdsianultiplied by the dot product. We must also
compute the specular term. To compute the specataponent we must first normalize the
halfvector we received from the vertex shader,aad compute the dot product between the
normalized halfvector and the normal.

if (NdotL > 0.0) {
color += diffuse * NdotL;
halfV = normalize(halfVector);
NdotHV = max(dot(n,halfV),0.0);
color += gl_FrontMaterial.specular *

gl_LightSource[0].specular *
pow(NdotHV, gl_FrontMaterial.shininess);

}

gl_FragColor = color;

The following images show the difference in terrhsisual results between computing the lighting
per vertex versus per pixel.

Per Vertex Per Pixe

A Shader Designesroject containing the shaders for the directidighlt per pixel can be found in
here

Point Light Per Pixe

This tutorial is based on tltgrectional lights tutoriahs most (99%) of the code comes from there.
The tutorial is based on the difference betweemextibnal light and a point light. A directional
light is assumed to be infinitely far away, so ttieg light rays are parallel when they reach the
object. In contrast, a point light has a positiamd sends rays in all directions. Furthermore, in a
point light, the intensity decays with the distatzé¢he vertex.

From an OpenGL application point of view there tave differences between the two:

- thew component of the light position field: in a directal light it is zero to indicate that the
position is in fact a direction (or vector), wha®in a point light thev component of the
light position field is 1.

« The attenuation is specified based on three coeffis: a constant term, a linear term, and a
guadratic term

From a computational point of view these differengrist be taken care of. For a directional light,
the direction of the light rays is constant for gwveertex, whereas for a point light it is the \act
from the vertex to the lights position. Hence th#it needs to change in the vertex shader is the
computation of the lights direction.

The attenuation is computed based on the folloiengrula in OpenGL:

1
k, + kd + kd®

art

where kO is the constant attenuation, k1 is theglirattenuation, k2 is the quadratic attenuatiah an
d is the distance from the light's position to vieetex.

Note that the attenuation does not vary lineariyhwlistance, hence we can't compute the
attenuation per vertex and use the interpolatedevial the fragment shader. We can however
compute the distance in the vertex shader ancheseterpolated distance in the fragment shader to
compute the attenuation.

The equation for the color using a point light is:
color = ambientGlobal + att(ambient + diffuse+ specular)

As shown in the above equation, the ambient terrst fio@ spitted in two: one global ambient term
using the lighting model ambient setting and atlggecific ambient term. The vertex shader must
separate the computation of the ambient term aswglyd The new vertex shader is:

varying vec4 diffuse,ambientGlobal,ambient;
varying vec3 normal,lightDir,halfVector;
varying float dist;

void main()

{
vec4 ecPos;
vec3 aux;

normal = normalize(gl_NormalMatrix * gl_Normal);

[* these are the new lines of code to compute the light's

direction */
ecPos = gl_ModelViewMatrix * gl_Vertex;
aux = vec3(gl_LightSource[0].position-ecPos);
lightDir = normalize(aux);
dist = length(aux);
halfVector = normalize(gl_LightSource[0].halfVect or.xyz);
/* Compute the diffuse, ambient and globalAmbient terms */
diffuse = gl_FrontMaterial.diffuse * gl_LightSour ce[0].diffuse;
[* The ambient terms have been separated since on e of them */
[* suffers attenuation */
ambient = gl_FrontMaterial.ambient * gl_LightSour ce[0].ambient;
ambientGlobal = gl_LightModel.ambient * gl_FrontM aterial.ambient;
gl_Position = ftransform();

}

The fragment shader needs to compute the attenuétt@lso needs to normalize the interpolated
light direction, since the direction is potentiatlifferent for every vertex.

varying vec4 diffuse,ambientGlobal, ambient;
varying vec3 normal,lightDir,halfVector;

varying float dist;

void main()

{
vec3 n,halfV,viewV,Idir;
float NdotL,NdotHV;
vec4 color = ambientGlobal;

float att;
[* a fragment shader can't write a varying variab le, hence we
need
a new variable to store the normalized interpolat ed normal */
n = normalize(normal);
/* compute the dot product between normal and nor malized lightdir
*/
NdotL = max(dot(n,normalize(lightDir)),0.0);
if (NdotL > 0.0) {
att = 1.0/ (gl_LightSource[0].constantAttenuati on +
gl_LightSource[0].linearAttenuation * dist
+
gl_LightSource[0].quadraticAttenuation *
dist * dist);

color += att * (diffuse * NdotL + ambient);

halfV = normalize(halfVector);

NdotHV = max(dot(n,halfV),0.0);

color += att * gl_FrontMaterial.specular *
gl_LightSource[0].specular *

pow(NdotHV,gl_FrontMaterial.shininess);
}

gl_FragColor = color;

The following images show the difference betwe@oiat light as computed by the fixed
functionality, i.e. per vertex, and using the shiadehis tutorial, i.e. per pixel.

Fixed Functionality Per Pixel

The full source of the shaders, i8hader Designgsroject can be found inere

Spot Light Per Pixel

This tutorial is based on the previous tutoriairesst (99%) of the code comes from there. The only
thing new in a spot light, when compared fooant light, is that in the former the light rays are
restricted to a cone of light where as in the tdtte rays are emitted in all directions.

From an OpenGL application point of view the difieces between the two are:

- The spot light, besides the position has a diragcfaotDirection, which represents the axis
of the cone.

- There is an angle of the cone. GLSL offers bothaiingle, as specified in the application, as
well as the cosine which is a derived variabetCosCutoff.

- Finally we have a rate of decagpotExponent, i.e. a measure of how the light intensity
decreases from the center to the walls of the cone.

The vertex shader is the same as ingihiet light It's in the fragment shader that we're going to
make some changes. The diffuse, specular and ahdaierponents will only have an effect if the
fragment being shaded is inside the light's corendd the first thing we must do is to check this.

The cosine of the angle between the light to vevestor and the spot direction must be larger than
spotCosCutofff otherwise the fragment is outside the cone anidowll receive the global ambient
term.

n = normalize(normal);

/* compute the dot product between normal and Idir */
NdotL = max(dot(n,normalize(lightDir)),0.0);

if (NdotL > 0.0) {

spotEffect = dot(normalize(gl_LightSource[0].spot Direction),
normalize(-lightDir));
if (spotEffect > gl_LightSource[0].spotCosCutoff) {

/* compute the illumination in here */

}

gl_FragColor = ...

The computation of the illumination is pretty muble same as in thgoint light case, the only
difference being that the attenuation must be pligtl be the spotlight effect using the following
equation:

spotEffect= (spotDirection- lightDir)***?

wherespotDirection is a field from the ligth state (seerg, lightDir is the vector from the light
source to the vertex, aisdotExp is the spot rate of decay. This is also providgthie OpenGL
state (se@erg, and controls how the lights intensity decaysifithe center of the cone it its

borders. The larger the value the faster de dewifly,zero meaning constant light within the light
cone.

spotEffect = pow(spotEffect, gl_LightSource[0].sp otExponent);
att = spotEffect / (gl_LightSource[0].constantAtt enuation +
gl_LightSource[0].linearAttenuation * dist +
gl_LightSource[0].quadraticAttenuation * dist *
dist);

color += att * (diffuse * NdotL + ambient);

halfV = normalize(halfVector);

NdotHV = max(dot(n,halfV),0.0);

color += att * gl_FrontMaterial.specular *
gl_LightSource[0].specular *
pow(NdotHV,gl_FrontMaterial.shininess);

The following images show the difference betwe@@oiat light as computed by the fixed
functionality, i.e. per vertex, and using the shiadehis tutorial, i.e. per pixel.

Fixed Functionality Per Pixel

The full source of the shaders, ihader Designgsroject can be found inere

Simple Texture

In order to perform texturing operations in GLSL mexd to have access to the texture coordinates

per vertex. GLSL provides sonaéributevariables, one for each texture unit:
attribute vec4 gl_MultiTexCoordO;
attribute vec4 gl_MultiTexCoord1;
attribute vec4 gl_MultiTexCoord2;
attribute vec4 gl_MultiTexCoord3;
attribute vec4 gl_MultiTexCoord4;
attribute vec4 gl_MultiTexCoord5;
attribute vec4 gl_MultiTexCoord®6;
attribute vec4 gl_MultiTexCoord7;

GLSL also provides access to the texture matricesdch texture un|t in amiform array.
uniform mat4 gl_TextureMatrix[gl_MaxTextureCoords]

The vertex shader has access to the attributesediedibove to get the texture coordinates specified
in the OpenGL application. Then it must computetéxture coordinate for the vertex and store it
in the pre defined varying varialdg TexCoord[i], wherei indicates the texture unit.

The simple following instruction sets the vertexttee coordinate for texture unit O just by copying
the texture coordinate specified in the OpenGL iappbn.

gl_TexCoord[0] = gl_MultiTexCoordO;
A simple example of a vertex shader to setup textoordinates for a texture, using texture unit 0,

could be:
void main() {

gl_TexCoord[0] = gl_MultiTexCoordO;
gl_Position = ftransform();

If we wanted to use the texture matrix then we daoulite:
void main() {

gl_TexCoord[0] = gl_TextureMatrix[0] * gl_MultiTe xCoord0;
gl_Position = ftransform();

}
As mentioned beforgl TexCoord is a varying variable, i.e. it will be used in thagment shader to

access the interpolated texture coordinate.

In order to access the texture values it is necgs$saleclare a special type of variable in the
frament shader. For a 2D texture we could write:

uniform sampler2D tex;
Data types for 1D and 3D textures are also availdhe general format is: samp2ywherei is
the dimensionality of the texture. The user defitexdrariable contains the texture unit we are
going to use, in this case 0. The function thaegius a texel, a pixel in the texture image, is
texture2D. This function receives sampler2D, the texture coordinates, and it returns the texel

value. The signature is as follows:
vec4 texture2D(sampler2D, vec?);

The returned value takes into account all the texsettings as defined in the OpenGL application,

for instance the filtering, mipmap, clamp, etc.ur@agment shader can then be written as:
uniform sampler2D tex;

void main()

{

vec4 color = texture2D(tex,gl_TexCoord][0].st);
gl_FragColor = color;

}
Notice the usage of selectsrwhen accessing gl_TexCoord. As mentioned in se@ata Types

and Variableswhen accessing texture coordinates the followelgctors can be used: s,t,p,q. (Note
thatr is not used to avoid conlficts with rgb selectors)

Texture Textured Cube

A Shader Designgsroject is available ihere

Combine Texture + Fragment

OpenGL allows us to combine the texture color \lig fragments color in several ways. In the
next table some of the available modes for the R@Gi4e are presented:

GL_REPLACE C = Ct A=At
GL_MODULATE C = Ct*Cf A = AtAf
GL_DECAL C=Cf*(L1-At) +Ct*At A= Af

In the table abov€t andAt represent the color and alpha value of the texdlementCf andAf
represent the color and alpha value of the fragrfperdr to applying the texture), and finalyand
A represent the final color and alpha.

The example provided in threvioussection is the equivalent of GL_REPLACE. Now wejoéng
to implement the equivalent of GL_MODULATE on aditbe. The shaders will only compute the
diffuse and ambient component with a white diffdgectional light. For the full material definition
please see thaghting section.

Since we're using lights, and therefore normaks yvirtex shader msut do some extra work. Namely
it must transform into eye space and normalizentirenal, and it must also normalize the light
direction (the light direction has already beemsfarmed into eye space by OpenGL). The vertex
shader is now:

varying vec3 lightDir,normal,

void main()

{

normal = normalize(gl_NormalMatrix * gl_Normal);
lightDir = normalize(vec3(gl_LightSource[0].posit ion));

gl_TexCoord[0] = gl_MultiTexCoordO;
gl_Position = ftransform();

}
In the fragment shader the color and alpha ofiteagment is computed intdf andaf

respectively. The rest of the shader is just comguhe GL_MODULATE formulas presented

above.
varying vec3 lightDir,normal,
uniform sampler2D tex;

void main()
vec3 ct,cf;
vec4 texel;
float intensity,at,af;
intensity = max(dot(lightDir,normalize(normal)),0 .0);
cf = intensity * (gl_FrontMaterial.diffuse).rgb +
gl_FrontMaterial.ambient.rgb;
af = gl_FrontMaterial.diffuse.a;
texel = texture2D(tex,gl_TexCoord[0].st);
ct = texel.rgb;

at = texel.a;

gl_FragColor = vec4(ct * cf, at * af);

GL_REPLACE GL_MODULATE

A Shader Designesroject is available ihere

MultiTexture

Multitexturing is also really easy in GLSL. All weave to do is to access both textures. And since
in here we're going to use the same texture coatesnve don't even have to rewrite the vertex
shader. The fragment shader also suffers a mirergghto add both textures colors.

varying vec3 lightDir,normal;

uniform sampler2D tex,|3d;

void main()

vec3 ct,cf;
vec4 texel;
float intensity,at,af;

intensity = max(dot(lightDir,normalize(normal)),0 .0);

cf = intensity * (gl_FrontMaterial.diffuse).rgb +
gl_FrontMaterial.ambient.rgb;
af = gl_FrontMaterial.diffuse.a;

texel = texture2D(tex,gl_TexCoord[0].st)+
texture2D(13d,gl_TexCoord[0].st);

ct = texel.rgb;

at = texel.a;

gl_FragColor = vec4(ct * cf, at * af);

L3D

Texture Unit 0 Texture Unit 1 Textured Cube

And now for something a little different: a glowtime dark effect. We want the second texture to
glow in the dark, i.e. it will be fully bright whethe light doesn't hit, and it will be dimmed as it
gets more light.

Additive Multi-Texture Glowing Multi-Texture

We have to recompute the final color in two stdjpst we compute a color which is the first texture
modulated with the fragments color, and afterwavdsadd the second texture unit depending on
the intensity.

If intensity is zero then we want the second texture in ifsstoéngth. When thimtensity is 1 we
only want a 10% contribution of the second textung. For all the other values oftensity we
want to interpolate. We can achieve this withdmeothstep function. This function has the
following signature:

genType smoothStep(genType edge0, genType edgel, g enType X);
The result will be zero i <= edge0, 1 if x >=edgel and performs smooth Hermite interpolation
between 0 and 1 wheaalgeO < x < edgel. In our case we want to call the function as feo
coef = smoothStep(1.0, 0.2, intensity);
The following fragment shader does the trick:
varying vec3 lightDir,normal;
uniform sampler2D tex,|3d;

void main()

{
vec3 ct,cf,c;
vec4 texel;

float intensity,at,af,a;

intensity = max(dot(lightDir,normalize(normal)),0. 0);

cf = intensity * (gl_FrontMaterial.diffuse).rgb +
gl_FrontMaterial.ambient.rgb;

af = gl_FrontMaterial.diffuse.a;

texel = texture2D(tex,gl_TexCoord[0].st);

ct = texel.rgb;
at = texel.a;

c=cf*ct;
a=af * at;

float coef = smoothstep(1.0,0.2,intensity);
¢ += coef * vec3(texture2D(I3d,gl_TexCoord[0].st));

gl_FragColor = vec4(c, a);

}

A Shader Designgsroject is available ihere

Thegl NormalMatrix

The gl_NormalMatrix is present in many vertex shiade here some light is shed on what is this
matrix and what is it for. This section was insgif®y the excellent book by Eric Lengyel
"Mathematics for 3D Game Programming and Computapkics".

Many computations are done in eye space. Thisdhds with the fact that lighting needs to be
performed in this space, otherwise eye positioreddpnt effects, such as specular lights would be
harder to implement.

Hence we need a way to transform the normal inospyace. To transform a vertex to eye space we
can write:

vertexEyeSpace = gl_ModelViewMatrix * gl_Vertex;

So why can't we just do the same with a normalor@dtirst a normal is a vector of 3 floats and the
modelview matrix is 4x4. This could be easily owene with the following code:

normalEyeSpace = vec3(gl_ModelViewMatrix * vec4(gl _Normal,0.0));

So,gl_NormalMatrix is just a shortcut to simplify code writing? Natmeally. The above line of
code will work in some circunstances but not all.

Lets have a look at a potential problem:

In the above figure we see a triangle, with a ndanad a tangent vectors. The following figure
shows what happens when the modelview matrix cosit@inon-uniform scale.

T N

Note: if the scale was uniform, then the directodthe normal would have been preserved, The
length would have been affected but this can biéydfaged with a normalization.

In the above figure the modelview matrix was apptie all the vertices as well as to the normal and
the result is clearly wrong: the normal is no longerpendicular to the surface.

So now we know that we can't apply the modelviewalirtases to transform the normal vector. The
guestion is then, what matrix should we apply?

We know that, prior to the matrix transformatiotNE O, since the vectors are by definition
perpendicular. We also know that after the tramsdion N'.T' must remain equal to zero, since
they must remain perpendicular to each other. bstsime that the matrix G is the correct matrix to
transform the normal vector. T can be multiplietésaby the upper left 3x3 submatrix of the
modelview (T is a vector, hence the w componenere). This is because T can be computed as
the difference between two vertices, thereforestmae matrix that is used to transform the vertices
can be used to transform T. Hence the followingagiqu:

N'T'=(GN)-(MT)=0
The dot product can be transformed into a prodfieectors, therefore:
(GN)-(MT) = (GN)' (MT)

Note that the transpose of the first vector mustdesidered since this is required to multiply the
vectors. We also know that the transpose of a pligiition is the multiplication of the transposes,
hence:

(GN) (MT)=N'G'MT

We started by stating that the dot product betwéamd T was zero, so if the following equation is
true then we are on the right track.

G'M=1I
Applying a little algebra yieds
G=(M"1)

Therefore the correct matrix to transform the ndnsighe transpose of the inverse of the M matrix.
OpenGL computes this for us in tgle NormalMatrix.

In the beginning of this section it was stated tishg the modelview matrix would work in some
cases. Whenever the 3x3 upper left submatrix ofrtbdelview is orthogonal we have:

M '=M"=>G=M

This is because with an orthogonal matrix, thedpase is the same as the inverse. So what is an
orthogonal matrix? An orthogonal matrix is a matsikere all columns/rows are unit length, and
are mutually perpendicular. This implies that wih&a vectors are multiplied by such a matrix, the
angle between them after transformation by an gadhal matrix is the same as prior to that
transformation. Simply put the transformation press the angle relation between vectors, hence
normals remain perpendicular to tangents! Furtheenigreserves the length of the vectors as
well.

So when can we be sure that M is orthogonal? Wheshinwt our geometric operations to rotations
and translations, i.e. when in the OpenGL applicatve only usglRotate and gl_Translate and
notglScale. These operations guarantee that M is orthogdiwik: gluLookAt also creates an
orthogonal matrix!

Normalization | ssues

Vertex Shader

The dot product is commonly used to compute theneasf the angle between two vectors. As we
know this will only hold if both vectors are nornedd. This is why we use the normalization
operation in many shaders. In here we will see wheran skip this step, and we must use it.
When a normal vector arrives at a vertex shadesnsmon to normalize it

normal = normalize(gl_NormalMatrix * gl_Normal);

The multiplication by thgl_NormaMatrixtransforms the incoming normal to eye-space. The
normalization guarantees a unit length vector gaired to compute the cosine with a dot product.

So can we avoid the normalization? We'll in sonsesave can. If thgl_NormaMatrixis
orthogonal then we know that the length of the mow vector is preserved, i.e. the length of
normal is equal to the length gf_Normal. Therefore, if the normals from the OpenGL appiara
are normalized, which is common, we can avoid threnalization in the shader.

In practice this means that if we ugleLookAt to set the camera, and then perform only rotations
and translations on our models, we can skip thenabzation of the normal vector in the shader. It
also means that a directional light will have it®dtion already normalized.

Fragment Shader

In the fragment shader we often find ourselves atimmg a vector which was just normalized in
the vertex shader. Do we really need to do thish,\tfie answer is yes, in most cases we do.

Consider a triangle with three different per vem@xmal vectors. The fragment shader receives an
interpolated normal, based on the distance froniriggment to the three vertices. The problem is
that the interpolated vector, although it has thktrdirection, it doesn't have unit length.

The following diagram shows why this is the cadee Black lines represent the faces (in 2D), the
normals at the vertices are represented in blue.gféen vector represents an interpolated normal
at the fragment (represented with a dot). All iptéated normals will lie the dotted line. As can be
seen in the figure, the green vector is smallem tha blue vectors (which are unit length, at least
that was my intention :)).

Note that if the vertex normals were not normaljzeat only the length would be different from

one, but also the direction would be worng in teeagal case. Hence, even if a vector isn't used on
a vertex shader, if we need to have it normalipetié fragment shader, we must also normalize it
on the vertex shader.

There is however a case when normalization carkipeed in the fragment shader, as long as the

vectors per vertex are normalized. This is whervdators per vertex all share the same direction,
i.e. they are equal. The interpolation of such eectvould yield exactly the same vertex as the per
vertex vectors, hence normalized (we assumed libatdrtex vectors were normlized).

A simple example is when one considers a directilbgia. The direction is constant for all
fragments, so if the direction is previously norinad, we can skip the normalization step in the
fragment shader.

