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The Monte Carlo method

Monte Carlo (MC) is a perfect example of computer
simulations (not only computer) of the real-world phenomena

Monte Carlo applications:

Physics: particle physics, astrophysics,
nuclear physics, radiation damage,...

Medicine: radiation therapy, nuclear
medicine, computer tomography,...

Chemistry: molecular modeling,
semiconductor devices,...

Finance: financial market simulations,
pricing, forecast sales, currency,...

Optimization problems: manufacturing, -
transportation, health care, agriculture,...

MC vs Neural Nets:
Data production for neural nets slower but more

And much more! precise and controllable




Monte Carlo




TThe simplest Monte Carlo example:
probabllities of roulette

What is the probability of red?
i@ Observe the result many times (it is not necessary to stake:)
@ Count the total of red wins: N

& Count the total of games: N

red

total

@ The measured probability of red will be: P,y = N,.4/Noa
@ If Nigpa— ®© => Py = Preg irue = 18/(18+18+1) = 0.486



Monte Carlo example: Buffon’s Needle (1777)

* One of the oldest problems in the field of geometrical
probability, first stated in 1777.

* Drop a needle on a lined sheet of paper and determine
the probability of the needle crossing one of the lines

* Remarkable result: probability is directly related to the
value of &t

* The needle will cross the line if x £ L sin({#). Assuming L <
D, how often will this occur?

T do T Lsin® do L T 2L
Poyt = Poyt(0)— = —_— = inf df = —
cut j{; cur( ) T f[) D - =D 0 s1n =D

 Bysampling P.,, one can estimate .

F 3
Distance X Length of the
between 2] needle =L
lines =D




Monte Carlo Is a simple and a general method
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Working on your method is a method to
JFroject Estimates J That's Exactly what we're | | obtain deterministic results

aoing . .. .« from random values
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In other words, try many
times and count the total of
the outcomes you like

@ Generate N random points X, in the problem space
@ Calculate the score f,=f (X,) for the N points
& Calculate the result of your average score: > |f=

@ According to the Central Limit Theorem, f will approach

the true average value |(f)=1im f
N=>




Monte Carlo numerical integration:

extremely useful for multidimensional integrals!

A:fd;‘{i; dx,=dx,.dx,,dx,;...=dA

A
1= f(X)d%~?
A
] ‘f’;
(Idea is exactly the same! ) T 2=f(R)
- . / , -—-9.____1},
@ Generate N random points in X,€A —» A !

b :
@ Calculate the score f,=f(X,) for the N points x/ \I\/

& Calculate the result of your integral: AA

I:ff(Z)dZNIMC:Z fiAA:%Zfi:Af

@ Following the Central Limit Theorem, I,,- will approach the true integral value:

I=[ f(X)dX=lim I,,c=Alim f
A

N> N=>




MC example: Laplace’s method of calculating 1 (1886)

@ Side of the square =1
@ Area of the square = A =4
@ Area of the circle is integral we

calculating:| I =

=flx.|=

& Everything we need is to count the number of g5l
points X, inside the circle: al
Nc:N)'{ieI:Z fi
i=1

@ This will give the value of our integral:

Avx 4
SN f=|=N_ > n
N;fl N “Nse




History of Monte Carlo

@ Fermi (1930): random method to calculate the properties @ @
of the newly discovered neutron :

@ Manhattan project (40’s): simulations during the initial
development of thermonuclear weapons. Von Neumann
and Ulam coined the term “Monte Carlo”

@ Metropolis (1948) first actual Monte Carlo calculations
using a computer (ENIAC)

@ Berger (1963): first complete coupled electron-photon
transport code that became known as ETRAN

@ EXxponential growth since the 1980’s with the availability
of digital computers




However, sometimes the statistics is a problem

- .1“ 'y % =
' ]
_ \

| LOOKED IN THE FUTURE, 1 SAW
14,000,605 FUTURES AND ONLY 1 WHERE WE WIN

( How does the MC error depend on the MC statistics N? )




First, we need to know about distributions:

PDF and CDF

Normal Distribution

0.05 1 0.13% 2.14% 4 13.59% |34.13% | 34.13% | 13.59% ) 2.14% 0.13%

,u—|40 “_.30 ,u—l2(:f U—0 U U+0 ,u+|20 ,u+|30 ,u+|40




Probability Density Function (PDF)

@ If we generate a set of random variables X.€A, \
the probability of them is not necessarily equal. D U
In some zones of A we can find more random e L
variables and some of them less. A Xy TEE
. .d'- t=-.€. ?‘{l -
" ‘n“' i-.u--In “.-u ‘..n
i@ However, we can define a function related to the f"i_“.,"'f.;' =-:-"
probability of the generated points, so called U ‘.-_ )
probability density function (PDF). or ot
@ Probability Density Function (PDF) p(%,) of ( For simplicity let's )
vector X, is a function that has three properties: switch to the 1D case:
1) belongs to some region A: X,EA a<x<b
2) is non-negative in this region: P(E)XEA 0 p(x) asib 0
3) is normalized: SAP b b
{P(Xi)dxi 1 fp(x)dx:1




Cumulative Distribution Function (PDF)

PDF IS NOT A PROBABILITY
It is a probability density

( Probability is the integral of PDF: )

@ Cumulative Density Function (CDF) is a direct measure of probability:

X

F(x):Prob{a§xsx’}:f p(x')dx’ \

& CDF has the following properties:

1) F(a) = 0, F(b) = 1;

2) F(x) is monotonically increasing, since p(x)=0.




Some example distributions — Uniform PDF

& The uniform (rectangular) PDF on the interval [a, b] and its CDF are given by

1 r 1 X—a
p (X) — Fix)= dx'=
b—a (%) { b—a b—a
012 | T I | | [ I 12 | | I I | | |
PDF p(x) CDF F(x)
. §§ - 1.0f--------mmmemmea
0.080 \§ { os80f -
N § CDF =Aprobability of x
] § to ble in this|area il
o
0.040 | NN 1 040F -
NN
_ \ {1 :
N
00 l ] R | ] ] 00 ] ] ] ]
0 10 20 30 40 0 10 30 40
Random variable x Random variable x



Where we use the uniform distribution

@ Side of the square =1
@ Area of the square = A =4
@ Area of the circle is integral we

calculating:| I =

=flx.|=

& Everything we need is to count the number of g5l
points X, inside the circle: al
Nc:Ni'ieI:Z fi
i=1

@ This will give the value of our integral:

A 4
IMC:FZ]‘I: 2N > 7

=1 N CN->w




Some example distributions — Exponential PDF

@ The exponential PDF on the interval [0, ] and its CDF are given by

0.30

0.20

0.10

0.0

Random variable x

p(x)=p(x|la)=ae F(x):fae_“'dx'=1—e_”
0
1 1 1 12 | | |
PDF f(x) _ 1.0 b----Probability > 1 (X = «)
CDF = probability of x0-80 i
— >
to be in this arga ' i
2 0.40 7
7 CDF F(x) ]
NN . . 0.0 L . !
0 5 10 15 20 5 10 15 20

Random variable x




Exponential distribution example: nuclear decay

& The time of nuclear decay is a random value with probability density function

where Tt is the mean lifetime of the nucleus; the half-life time t,, = T In(2)

@ The probability of decay at time t is calculated using the CDF:

; v _t
Poco()=F(0)=] e "dt'=1-e "€[0,1]
0

@ To use Monte Carlo to generate the decay time t one needs to replace P, (1)
by a random number ¢ € [0,1]:

t=—7In(1—-&)=—71In¢&

& Nuclear decay applications: nuclear physics,

nuclear reactors, nuclear medicine, SPECT, PET, ...




Mean, variance and standard deviation

@ Consider a function z(x), where x is a random variable described by a PDF p(Xx).
@ The function z(x) itself is a random variable Thus, the mean value of z(x) is

defined as:
(z2)=p(z fz
& Then, variance of z(x) is given as this
o (z)=((z(x)—(2)) >f p(x)dx=(z")—(z)"

@ The heart of a Monte Carlo analysis is to obtain an estimate of a mean value
(a.k.a. expected value). If one forms the estimate

1 < 1 d =lim z
:N;Zi_ﬁzz(xi) <Z> NI_I)IC}OZ

NI

@ The variance of z is givenas |0°(z)=0"(




Monte Carlo error

g The Monte Car|0 error iS given by A confidence coefficient confidence level
the standard deviation of the 025 0.1974 20%
expected value: 0.50 0.3829 38%

1.00 0.6827 68%
N 1.50 0.8664 87%
- Y <Z ) 2 2.00 0.9545 95%
0(2)= 22 ;0(2)=\ X (z~(2)PIN| [2 | o
vN o1 3.00 0.9973 99%

4.00 0.9999 99.99%

& Since in MC we don’t know the Normal Distributior
true value (z), we should use 0.40/
corrected (“unbiased”) sample 5035
standard deviation: 2030

O 0.25
\/ N g 0.20
—\2 Q
slz)= z—Z)[(N—1 g 015
(2= X 2=z (N1
0.05 1 0.13% 2.14% 413.59% | 34.13% | 34.13% | 13.59% ). 2.14% 0.13%
- = = 0.00 T ; : .
@ Confidence coefficient: p—40 p-30 u-20 p-0 [ p+0 p+20 p+30 p+do
__.slz) .. s(z) 1 —u?2 Higgs boson discovery:
Prob{z— A —=<(z)<Z+A = fe du 2
N VN V2my A=5 («50»)




However, sometimes the statistics is a problem

| LOOKED IN THE FUTURE, | SAW

14,000,605 FUTURES AND ONLY 1 WHERE WE WIN

N

1—p. .
MC (10>:S Z)N\/pwm( pwm) T~

z=p,.=N_._/N=1/14000605=7.14-10""

=0 (loss) or 1 (win)

i=1

\/ZZ/N z°=[2,=0;1]= \/ZZ/N z’

pwin

' :\/z_zzzm:\/pwin(l_pwin)

W

" —1/14000605=7.14-10"°

N

Avengers win with (1 * 1)/14000605 probability => they need more statistics

ﬁconfidence level 68 %i



Real world case: particle physics

& Decay of an unstable particle itself is a random process

& This decay may happen through different channels =>
Branching ratio:

ot 9 l"l+ VH (999877 %)

D v,y (2.00 x 10 %)

™D et v, (1.23 x 10 %) 7 Very low
+ + 7Y ili

T et vy (7.39x107%) | | probability

Tt 2> et v, 1o

(1.036 x 10 %) 25

Higgs boson
events* errorbars

(

J

Tt 2> etv,ete (3.2 x10° %)

20

Events/ 2.5 GeV

@ The statistical error of decay events in a decay
channel or of the errorbars in any histogram can
be estimated using the same formula:

[

15}

p(1-p)
N

for 3o multiply it by 3,
confidence level 99%

Error (1 0):\/

T T T T I T T T T | T T T T |
ATLAS Preliminary

- V\s=13TeV, 36.1 fb"

L H-ZZ"— 4u

-o- Data

=== Fil

T | LI T

[ ] Background ]

..TIT

TS T TS

135

m,, [GeV]

*https://atlas.cern/updates/briefing/new-atlas-measurement-higgs-boson-mass
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A trick to reduce the statistics required for rare events

| LOOKED IN THE FUTURE, | SRW
14,000,605 FUTURES AND ONLY 1 \WHERE WE WIN

Let's have several relative
wins instead of 1 definite:

z, €[0,1]

Ziwins ={0.51,0.23,0.15,0.08,0.03}
(the average puin is the same)

Avengers win with (1.0 £ 0.6)/14000605 probability (confidence level 68 %)

In particle physics use a particle probability weight:
Welght =1- pdecay; pdecay E [011]




€ GEANT/

A SIMULATION TOOLKIT

https:/Igeant4.web.cern.ch/



Geant4*: a Monte Carlo simulation toolkit

Geant4 generates primary beam of particles randomly according the distribution
set up.

All the Geant4 primary particles are simulated independently.

Primary particles are tracked in the material, can decay and produce secondary
particles, for instance radiation. This is simulated using various Geant4
processes most of which are random, which is also illustration of Monte Carlo.

The Geant4 output is some distribution of particles as well as scorlng of
interesting events. \ . >

In Positron Emission Tomography (PET)
we have (picture from **):

a source of gamma-rays distributed in some
space randomly emitting the photons and
surrounded by some material

A detector to score these gamma-rays —

*https:/igeant4.web.cern.ch/

**D. P. Watts et al. Nature Communications, 12, 2646 (2021)



Monte Carlo parallelization =>

supercomputing

@ All Monte Carlo points are independent => simple parallelization

@ In Geant4 all primary particles are automatically distributed between different cores
of the CPU using multithreading

@ Geant4 includes also MPI parallelization to parallelize across on multiple nodes

( Linear scaling on physical cores* )

600 Throughpyt

500
L a00 .
E Zthrea_ds/core I e ;
E 300}
E 61 Physical cores. " NURION@KISTI (Korea)
w L
Z 200

100} i -]

o—o Intel Xeon Phi

0 50 100 150 200
Number Threads

*https:/ltwiki.cern.ch/twiki/bin/view/Geant4/MultiThreadingTaskForce



Conclusions

@ The Monte Carlo (MC) method is a method to obtain deterministic
results from random values

@ Monte Carlo possesses a lot of applications in physics, chemistry,
medicine, finance, industry, social and life sciences.

@ Geant4 is a Monte Carlo simulation toolkit, with a very wide
functionality and the application range.

@ Geant4 is simply parallelizable and is siutable to be used on grids,
clusters and supercomputers.




Thank you for attention!
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