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The Monte Carlo methodThe Monte Carlo method
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Monte Carlo applications:

Physics: particle physics, astrophysics, 
nuclear physics, radiation damage,...

Medicine: radiation therapy, nuclear 
medicine, computer tomography,…

Chemistry: molecular modeling, 
semiconductor devices,...

Finance: financial market simulations, 
pricing, forecast sales, currency,…

Optimization problems: manufacturing, 
transportation, health care, agriculture,...

Data production for neural nets

And much more!

 

Monte Carlo (MC) is a perfect example of computer 
simulations (not only computer) of the real-world phenomena

MC vs Neural Nets:
slower but more 

precise and controllable



Monte CarloMonte Carlo
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The simplest Monte Carlo example: The simplest Monte Carlo example: 
probabilities of rouletteprobabilities of roulette
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What is the probability of What is the probability of redred??

Observe the result Observe the result many timesmany times (it is not necessary to stake:) (it is not necessary to stake:)

Count the totalCount the total of red wins:  of red wins: NNredred

Count the total of games: Count the total of games: NNtotaltotal

The measured probability of red will be: The measured probability of red will be: PPredred =  = NNredred/N/Ntotaltotal

If If NNtotaltotal→∞ => →∞ => PPredred→→PPred truered true  = = 1818/(/(1818+18++18+11) = 0.486) = 0.486



Monte Carlo example: Buffon’s Needle (1777)Monte Carlo example: Buffon’s Needle (1777)
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Monte Carlo is a simple and a general methodMonte Carlo is a simple and a general method

Generate Generate N random pointsN random points     in the problem space     in the problem space

Calculate the Calculate the scorescore                 for the N points                 for the N points

Calculate the Calculate the resultresult of your  of your average scoreaverage score: : 

According to the According to the Central Limit TheoremCentral Limit Theorem,        will approach  ,        will approach  
the the truetrue average value  average value 
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MC
In other words, try many 

times and count the total of 
the outcomes you like

x⃗i

f i=f ( x⃗ i)

f̄=
1
N
∑
i=1

N

f i

f̄
⟨ f ⟩= lim

N→∞

f̄

The Monte Carlo (MC) 
method is a method to 

obtain deterministic results 
from random values



Monte Carlo numerical integration:Monte Carlo numerical integration:
extremely useful for multidimensional integrals!extremely useful for multidimensional integrals!

Generate Generate N random points N random points inin            

Calculate the Calculate the scorescore                 for the N points                 for the N points

Calculate the Calculate the resultresult of your  of your integralintegral::

  

Following the Following the Central Limit TheoremCentral Limit Theorem,        will approach the ,        will approach the truetrue integral value:  integral value: 
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x⃗ i∈A

f i=f ( x⃗i)

I=∫
A

f ( x⃗ i)d x⃗i≈I MC=∑
i=1

N

f i ΔAA=
A
N
∑
i=1

N

f i=A f̄

Idea is exactly the same!

I=∫
A

f ( x⃗ i)d x⃗i= lim
N→∞

IMC=A lim
N→∞

f̄

A=∫
A

d x⃗ i ;

I=∫
A

f ( x⃗ i)d x⃗i−?

IMC

A

ΔA

z=f ( x⃗ i)

ΔAA=
A
N

d x⃗ i=dx1 idx2 i dx3 i ...=dA



MC example: Laplace’s method of calculating MC example: Laplace’s method of calculating ππ (1886) (1886)
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SideSide of the square = 1     of the square = 1    

Area of the Area of the squaresquare =  = AA = 4 = 4

Area of the Area of the circlecircle is integral we are calculating:  is integral we are calculating: 

Everything we need is to Everything we need is to countcount the number of  the number of 
points     inside the circle:points     inside the circle:

This will give the value of our integral:This will give the value of our integral:

I=π

f i=f ( x⃗ i)={1, if x⃗ i∈I
0, if x⃗ i∉I }

x⃗ i N c=N x⃗ i∈I=∑
i=1

N

f i

IMC=
A
N
∑
i=1

N

f i=¿
4
N

N c →
N→∞

π



History of Monte CarloHistory of Monte Carlo
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Fermi (1930): random method to calculate the properties Fermi (1930): random method to calculate the properties 
of the newly discovered neutronof the newly discovered neutron

Manhattan project (40’s): simulations during the initial Manhattan project (40’s): simulations during the initial 
development of thermonuclear weapons. Von Neumann development of thermonuclear weapons. Von Neumann 
and Ulam coined the term “and Ulam coined the term “Monte CarloMonte Carlo””

Metropolis (1948) first actual Monte Carlo calculations Metropolis (1948) first actual Monte Carlo calculations 
using a computer (ENIAC)using a computer (ENIAC)

Berger (1963): first complete coupled electron-photon Berger (1963): first complete coupled electron-photon 
transport code that became known as ETRANtransport code that became known as ETRAN

Exponential growth since the 1980’s with the availability Exponential growth since the 1980’s with the availability 
of digital computersof digital computers



However, sometimes the statistics is a problemHowever, sometimes the statistics is a problem
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How does the MC error depend on the MC statistics N?



First, we need to know about distributions: First, we need to know about distributions: 
PDF and CDFPDF and CDF
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Probability Density Function (PDF)Probability Density Function (PDF)
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If we generate a set of If we generate a set of random variablesrandom variables           ,            , 
the the probabilityprobability of them is  of them is not necessarily equalnot necessarily equal. . 
In some zones of In some zones of AA we can find more random  we can find more random 
variables and some of them less.variables and some of them less.

However, we can define a function related to the However, we can define a function related to the 
probability of the generated points, so called probability of the generated points, so called 
probability density functionprobability density function (PDF) (PDF)..

Probability Density FunctionProbability Density Function (PDF) (PDF)           of            of 
vector     is a function that has three properties:vector     is a function that has three properties:

1) belongs to some region A: 1) belongs to some region A: 

2) is non-negative in this region:2) is non-negative in this region:

3) is normalized: 3) is normalized: 

x⃗ i∈A

p ( x⃗i)
x⃗i

x⃗ i∈A

∫
A

p ( x⃗ i)d x⃗i=1

p ( x⃗i) ≥
x⃗ i∈A

0

For simplicity let’s 
switch to the 1D case:

∫
a

b

p (x)d x=1

a≤x≤b

p (x) ≥
a≤x≤b

0



Cumulative Distribution Function (PDF)Cumulative Distribution Function (PDF)
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Prob{x1≤x≤x2}=∫
x1

x2

p (x)d x=1

PDF IS NOT A PROBABILITY
It is a probability density

Probability is the integral of PDF:

Cumulative Density FunctionCumulative Density Function (CDF) (CDF) is a direct measure of probability:   is a direct measure of probability:  

CDFCDF has the following  has the following propertiesproperties::

1) F(a) = 0, F(b) = 1;1) F(a) = 0, F(b) = 1;

2) F(x) is monotonically increasing, since p(x)2) F(x) is monotonically increasing, since p(x)≥≥0.0.

F (x)=Prob{a≤x≤x ' }=∫
a

x

p (x ' )d x '

Prob{x1≤x≤x2}=F (x2)−F (x1)



Some example distributions – Uniform PDFSome example distributions – Uniform PDF
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The uniform (rectangular) PDF on the interval [a, b] and its CDF are given byThe uniform (rectangular) PDF on the interval [a, b] and its CDF are given by

ar
ea

 =
 C

D
F

CDF = probability of x 
to be in this area

1.0

p (x)=
1

b−a
F (x)=∫

a

x
1

b−a
dx '= x−a

b−a

p (x)



Where we use the uniform distributionWhere we use the uniform distribution
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SideSide of the square = 1     of the square = 1    

Area of the Area of the squaresquare =  = AA = 4 = 4

Area of the Area of the circlecircle is integral we are calculating:  is integral we are calculating: 

Everything we need is to Everything we need is to countcount the number of  the number of 
points     inside the circle:points     inside the circle:

This will give the value of our integral:This will give the value of our integral:

I=π

f i=f ( x⃗ i)={1, if x⃗ i∈I
0, if x⃗ i∉I }

x⃗ i N c=N x⃗ i∈I=∑
i=1

N

f i

IMC=
A
N
∑
i=1

N

f i=¿
4
N

N c →
N→∞

π



Some example distributions – Exponential PDFSome example distributions – Exponential PDF
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The exponential PDF on the interval [0, ∞] and its CDF are given byThe exponential PDF on the interval [0, ∞] and its CDF are given by

ar
ea

 =
 C

D
F

CDF = probability of x 
to be in this area

Probability → 1 (x → ∞)1.0

p (x)=p (x∣a)=α e−α x F (x)=∫
0

x

α e−α x ' dx '=1−e−α x



Exponential distribution example: nuclear decayExponential distribution example: nuclear decay
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The time of nuclear decay is a random value with probability density functionThe time of nuclear decay is a random value with probability density function

where where ττ is the  is the mean lifetimemean lifetime of the nucleus; the  of the nucleus; the half-lifehalf-life time  time tt1/21/2 =  = τ ln(2)τ ln(2)

The The probabilityprobability of  of decaydecay at time  at time tt is calculated using the  is calculated using the CDFCDF::

To use Monte Carlo to generate the decay time t one needs to replace PTo use Monte Carlo to generate the decay time t one needs to replace Pdecaydecay(t) (t) 
by a random number ξ  [0,1]:∈ [0,1]:by a random number ξ  [0,1]:∈ [0,1]:

Nuclear decay applicationsNuclear decay applications: nuclear physics, : nuclear physics, 

nuclear reactors, nuclear medicine, SPECT, PET, ...nuclear reactors, nuclear medicine, SPECT, PET, ...

p (t )=
1
τ
e

−
t
τ

Pdecay(t )=F (t )=∫
0

t
1
τ
e

−
t '
τ dt '=1−e

−
t
τ ∈[0,1]

t=−τ ln(1−ξ )=−τ ln ξ



Mean, variance and standard deviationMean, variance and standard deviation
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Consider a function Consider a function z(x)z(x), where x is a random variable described by a PDF p(x)., where x is a random variable described by a PDF p(x).

The function The function z(x)z(x) itself is a  itself is a randomrandom variable. Thus, the  variable. Thus, the meanmean value of z(x) is  value of z(x) is 
defined as:defined as:

Then, variance of z(x) is given as thisThen, variance of z(x) is given as this

The heart of a Monte Carlo analysis is to obtain an estimate of a mean valueThe heart of a Monte Carlo analysis is to obtain an estimate of a mean value

(a.k.a. (a.k.a. expected valueexpected value). If one forms the estimate). If one forms the estimate

The variance of    The variance of     is given as is given as

⟨ z ⟩≡μ (z )≡∫
a

b

z (x) p(x)d x

σ2
(z )=⟨(z (x)−⟨ z ⟩)2

⟩=∫
a

b

(z (x)−⟨ z ⟩)2 p (x)d x=⟨ z2
⟩−⟨ z ⟩2

z̄=
1
N
∑
i=1

N

z i=
1
N
∑
i=1

N

z (x i)
⟨ z ⟩= lim

N→∞

z̄

z̄ σ2
( z̄)=σ2

(
1
N
∑
i=1

N

zi)=
1

N2 ∑
i=1

N

σ 2
( z)=

1
N

σ 2
( z)



Monte Carlo errorMonte Carlo error
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The Monte Carlo error is given by The Monte Carlo error is given by 
the standard deviation of the the standard deviation of the 
expected value:expected value:

Since in MC we don’t know the Since in MC we don’t know the 
true value       , we should use true value       , we should use 
corrected (“unbiased”) sample corrected (“unbiased”) sample 
standard deviation:standard deviation:

Confidence coefficientConfidence coefficient::

σ ( z̄ )=
σ ( z)

√N
;σ ( z)=√∑

i=1

N

( zi−⟨ z ⟩)2
/N

⟨ z ⟩

s (z )=√∑
i=1

N

(zi− z̄ )2
/(N−1)

Prob{z̄− λ
s ( z)

√N
<⟨ z ⟩< z̄+λ

s( z)

√N
}≃

1

√2π
∫
λ

λ

e−u2
/2du Higgs boson discovery: 

λ=5 («5σ»)



However, sometimes the statistics is a problemHowever, sometimes the statistics is a problem
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z̄=pwin=Nwin /N=1/14000605=7.14⋅10−8

zi = 0 (loss) or 1 (win)

MCerror (1σ )=
s (z )

√N
≈√

pwin(1− pwin)

N
1≈√

pwin

N
=

√Nwin

N
=1/14000605=7.14⋅10−8

s (z )=√∑
i=1

N

(zi− z̄ )2
/(N−1)≈σ (z )=1

z̄=pwin=Nwin /N=1/14000605=7.14⋅10−8

Avengers win with (1 ± 1)/14000605 probability => they need more statistics
(confidence level 68 %)

1=√∑
i=1

N

zi
2
/N− z̄2

=[zi=0 ;1]=√∑
i=1

N

zi /N− z̄2

1=√ z̄− z̄2
=√ z̄ (1− z̄)=√pwin(1−pwin)



Real world case: particle physicsReal world case: particle physics
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DecayDecay of an unstable particle itself is a  of an unstable particle itself is a random processrandom process

This decay may happen through This decay may happen through differentdifferent  channelschannels =>  => 
Branching ratio:Branching ratio:

TheThe statistical error  statistical error of decay events in a of decay events in a decay decay 
channelchannel or of the  or of the errorbarserrorbars in any  in any histogramhistogram can           can          
be estimated using the same formula:be estimated using the same formula:

Error (1σ )=√ p(1−p)

N

Very low 
probability

Higgs boson 
events* errorbars

*https://atlas.cern/updates/briefing/new-atlas-measurement-higgs-boson-mass

for 3σ multiply it by 3, 
confidence level 99%



A trick to reduce the statistics required for rare eventsA trick to reduce the statistics required for rare events
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zi ∈ [0,1]: [0,1]

s (z )=√∑
i=1

N

(zi− z̄ )2
/(N−1)≈σ (z )=1

Avengers win with (1.0 ± 0.6)/14000605 probability (confidence level 68 %)

1=√∑
i=1

N

z i
2
/N− z̄2

⩽√∑
i=1

N

zi/N− z̄2

Let’s have several relative 
wins instead of 1 definite:

zi wins ={0.51,0.23,0.15,0.08,0.03}
(the average pwin is the same)

In particle physics use a particle probability weight:
weight = 1 - pdecay; pdecay ∈ [0,1]: [0,1]



https://geant4.web.cern.ch/



Geant4*: a Monte Carlo simulation toolkitGeant4*: a Monte Carlo simulation toolkit
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Geant4 generates primary beam of particles randomly according the distribution 
set up.

All the Geant4 primary particles are simulated independently.

Primary particles are tracked in the material, can decay and produce secondary 
particles, for instance radiation. This is simulated using various Geant4 
processes most of which are random, which is also illustration of Monte Carlo.

The Geant4 output is some distribution of particles as well as scoring of 
interesting events.

In Positron Emission Tomography (PET) 
we have (picture from **):

a source of gamma-rays distributed in some 
space randomly emitting the photons and 
surrounded by some material

A detector to score these gamma-rays

*https://geant4.web.cern.ch/
**D. P. Watts et al. Nature Communications, 12, 2646 (2021)



Monte Carlo parallelization => Monte Carlo parallelization => 
supercomputingsupercomputing
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All Monte Carlo points are independent => simple parallelization

In Geant4 all primary particles are automatically distributed between different cores 
of the CPU using multithreading

Geant4 includes also MPI parallelization to parallelize across on multiple nodes

Linear scaling on physical cores*

*https://twiki.cern.ch/twiki/bin/view/Geant4/MultiThreadingTaskForce

NURION@KISTI (Korea)



ConclusionsConclusions
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 The Monte Carlo (MC) method is a method to obtain deterministic 
results from random values

 Monte Carlo possesses a lot of applications in physics, chemistry, 
medicine, finance, industry, social and life sciences.

 Geant4 is a Monte Carlo simulation toolkit, with a very wide 
functionality and the application range.

 Geant4 is simply parallelizable and is siutable to be used on grids, 
clusters and supercomputers.



Thank you for attention!Thank you for attention!
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