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Abstract

Innovative applications of high-resolution airborne imaging are explored for detecting
grapevine diseases. Driven by the motivation to enhance early disease detection, the
method’s effectiveness lies in its capacity to identify isolated cases of grapevine yellows
(Flavescence dorée and Bois Noir) and trunk disease (Esca complex), crucial for preventing
the disease from spreading to unaffected areas. Conducted over a 17 ha vineyard in the
Forli municipality in Emilia-Romagna (Italy), the aerial survey utilized a photogrammetric
camera capturing centimeter-level resolution images of the whole area in 17 minutes. These
images were then processed through an automated analysis leveraging RGB-based spectral
indices (Green—Red Vegetation Index—GRVI, Green—Blue Vegetation Index—GBVI, and
Blue-Red Vegetation Index—BRVI). The analysis scanned the 1.24 - 10 pixels of the ortho-
mosaic, detecting 0.4% of the vineyard area showing evidence of disease. The instances,
density, and incidence maps provide insights into symptoms” spatial distribution and
facilitate precise interventions. High specificity (0.96) and good sensitivity (0.56) emerged
from the ground field observation campaign. Statistical analysis revealed a significant
edge effect in symptom distribution, with higher disease occurrence near vineyard borders.
This pattern, confirmed by spatial autocorrelation and non-parametric tests, likely reflects
increased vector activity and environmental stress at the vineyard margins. The presented
pilot study not only provides a reliable detection tool for grapevine diseases but also lays
the groundwork for an early warning system that, if extended to larger areas, could offer a
valuable system to guide on-the-ground monitoring and facilitate strategic decision-making
by the authorities.
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1. Introduction

Since the mid-20th century, grape growers from various countries have been chal-
lenged by grapevine yellows, a group of diseases associated with phytoplasmas that result
in reduced grape quality and yield losses. Flavescence dorée (FD) is certainly among the
most severe grapevine diseases: when allowed to spread uncontrolled, epidemic FD has
dramatic impacts on the vineyard.

FD has a highly species-specific vector, the leathopper Scaphoideus titanus, and a
symptomatology including downward rolling, leaf yellowing (white grape variety) or
reddening (red grape variety), stunted growth, unripened cane wood, and shriveled
berries [1,2]. Once infected, the possibility of recovery from disease is low: compulsory
measures consist of insecticide sprays and immediate uprooting of the infected plants.
Since its first outbreak in France in 1955, FD spread to other major European wine-growing
countries, such as Italy, Portugal, and Spain [3,4]. Now FD is subject to quarantine across
the European continent. The lack of a timely identification of symptoms allows the spread
of FD to go unchecked, highlighting the critical role of early detection methods in effectively
managing and mitigating the severe impact on vineyards. FD symptoms closely resemble
those of other grapevine yellows, such as Bois Noir (BN), which is caused by a different
phytoplasma and transmitted by the planthopper Hyalesthes obsoletus [5]. While molecular
approaches, such as PCR-based methods, can accurately distinguish between infections,
visual inspections alone are prone to errors. Although BN has become endemic in several
regions of Europe, it continues to pose a significant threat to grapevine cultivation and
remains a serious concern for vineyard management [6]. This overlap in symptomatology
is further complicated by the fact that the leaf discoloration, bunch drying, and irregular
wood ripening that characterize grapevine yellows are also common to other diseases, such
as the trunk disease known as Esca complex (EC), which is particularly noticeable in late
summer. EC, primarily affecting older vines, results from a group of fungi which infect
grapevines through pruning cuts or nursery stock. Affected plants exhibit tiger-striped
leaves, yellow or red chlorosis, chronic intervascular necrosis, and an overall declining
vitality [7]. EC poses significant economic challenges by reducing grape yield and vine
longevity; its spread is facilitated by pruning wounds and infected nursery stock, making
prevention and management critical yet challenging [8,9].

Within this context, the introduction of remote sensing techniques marks a significant
paradigm shift from traditional ground-based surveillance methods [10-12]. Over recent
decades, cutting-edge technologies have emerged as invaluable tools for diagnosing plant
diseases. The use of sensors operating across the electromagnetic spectrum enables the early
detection of changes in plant physiology due to biotic and abiotic stresses. Specifically, leaf
reflectance in the visible spectral regions (VIS, 400-700 nm) correlates with pigment content,
whereas reflectance in the near-infrared (NIR, 700-1000 nm) and short-wave infrared (SWIR,
1000-2500 nm) regions is generally indicative of leaf cell structure and moisture content [13].
To analyze vegetation’s spectral signature changes caused by infections, it is common to
adopt spectral indices derived by combining the reflectance values from specific spectral
regions [14-16]. This approach not only automates disease identification but also supports
or refines the direction of on-the-ground investigations.

While applicable to the general case, the use of multispectral indices highlighted that
the analysis methodologies must be carefully tuned to each specific context in terms of
grape variety, environmental and climatic conditions as well as the survey period. Hyper-
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spectral images and machine learning techniques support precision viticulture by mapping
reflectance patterns to plant pathologies [17]. However, these systems face challenges such
as high costs, data redundancy, and computational demands [18]. Indeed, hyperspectral
imaging generates massive datasets comprising hundreds of contiguous spectral bands.
This large data volume requires complex and resource-intensive processing workflows [10].
In contrast, RGB imaging offers notable advantages in terms of technical simplicity and
widespread accessibility, making it a cost-effective solution for crop monitoring. Its versa-
tility allows for deployment across a wide range of platforms, from handheld devices and
land-based agricultural machinery to aerial vehicles, enabling flexible data acquisition at
various distances and spatial scales [10]. Additionally, machine learning approaches, while
robust against noise and capable of mapping complex relationships between reflectance
and target variables, require large-scale training datasets to achieve a reliable predictive
performance. To ensure model robustness and accuracy across different vineyards and
monitoring campaigns, extensive and diverse ground-truth datasets must be systemat-
ically collected and integrated into the model development workflow. When training
data are limited and sensor or environmental variability is high, predictive accuracy can
degrade significantly [13,19]. These constraints often necessitate the application of feature
selection techniques and domain-specific adjustments to optimize performance; however,
such methods are computationally demanding and may not align with the operational
requirements of an early warning system, which demands timely processing and rapid
decision support [20].

This study aimed to develop a methodology for generating spatial incidence maps
to guide farmers in identifying areas with a high prevalence of disease symptoms. By
leveraging high-resolution airborne imaging, the approach translates remote sensing data
into actionable insights, enabling targeted in-field inspections. The proposed approach was
tested in a vineyard of Sangiovese grapes located in the Emilia-Romagna region (Italy),
where centimeter-level resolution images were captured and processed using tailored
software based on the calculation of RGB spectral indices. The outcomes, including the
identification of potentially diseased plants and the density and incidence maps, were
validated through direct field inspections.

2. Materials and Methods
2.1. Experimental Site

The experimental site is located in the territory of the Forli municipality in Emilia-
Romagna, one of the main vine-growing regions in Italy (Figure 1A). After the first cases
found in 1998, FD spread at a worrying rate in this region. Since 2000, the regional
administration has promoted and financed the monitoring of the entire territory, which has
made it possible to define the real frequency and distribution of FD and its vector as well
as direct the related phytosanitary measures. Recently, the regional plant protection service
has imposed on the Forli territory the immediate uprooting of every plant with suspicious
symptoms of FD.

The investigated 17.1 ha vineyard is primarily cultivated with Sangiovese, a red grape
variety that dominates the plantation. In addition, there are smaller sections allocated
for the cultivation of Alicante (red) and Chardonnay (white) grape varieties (Figure 1A),
the latter covering only 1.4 ha. The vineyard is characterized by a layout with an aver-
age spacing between rows set at 2.2 m while the average distance between individual
plants within a row is approximately 0.8 m (Figure 1B), leading to a plant density of
~5600 plants/ha.
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Figure 1. (A) Experimental site (17.1 ha) located in the Forli municipality (Emilia-Romagna, Italy).
The red line and the yellow line delimit the portions of investigated vineyard cultivated, respectively,
with red grapes (Sangiovese and Alicante) and white grapes (Chardonnay). (B) Aerial image of a
portion of the vineyard; the plot is characterized by an average inter-row distance of 2.2 m and an
average spacing between plants of 0.8 m.

2.2. Data Acquisition

The airborne survey was performed employing the Radgyro (Figure 2A), an aircraft
specifically designed and manufactured for environmental investigations in the fields of
radioactivity monitoring [21-24], soil mapping [25] and precision agriculture [26]. The
equipment used for the acquisitions included a Sony « 7R IV Mirrorless Full-Frame pho-
togrammetric camera (Figure 2B), configured in a nadiral position to guarantee the max-
imum quality of the frames collected. This camera, equipped with a 35 mm lens and a
61.0 megapixels resolution CMOS sensor, allowed the fine details of the vegetation to be cap-
tured. Georeferencing of the frames was ensured through a GNSS system (GPS, GLONASS,
Galileo, BeiDou) and radar altimeter, which permits reaching positioning accuracy of the
sub-meter level [27]. The achieved positioning accuracy is appropriate for the intended
purpose, as it provides farmers with sufficiently accurate information to effectively locate
and identify diseased plants in the vineyard.

The vineyard of the experimental site was surveyed with a single flight on the 8th
of August 2023 in good weather conditions and on a sunny day. The choice of date is
linked to the appearance of the first symptoms of FD in the area, which occurred in late
July during the 2023 season. The flight plan was designed with an average line spacing
of 25 m and complete coverage of the study area (Figure 2C) in about 17 min. The mean
height and mean velocity of the realized flight (Figure 2D) were, respectively, 96 m and
73 km/h. The flight parameters permitted the reach of an average ground resolution of
1.1 cm/pixel, an overlap between two consecutive images of more than 65%, and an overlap
between adjacent images of more than 70%. Before the flight, radiometric calibration was
performed using a dedicated calibration panel. This procedure, which includes white
balance adjustment, helps minimize the effects of illumination variability and atmospheric
interference, ensuring accurate color reproduction. Nevertheless, the use of normalized
vegetation indices (see Section 2.3) further mitigates the impact of varying illumination
and environmental conditions, enhancing the robustness of the analysis. The resulting
1015 photograms acquired were processed to generate a georeferenced orthomosaic of the
experimental site (Figure 3) with a resolution of 1.1 cm x 1.1 cm.
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Figure 2. (A) Radgyro, the aircraft used for the airborne photogrammetric survey. (B) The camera
and independent alimentation system installed in the lateral compartment of the Radgyro. (C) Flight
plan and (D) flight path of the survey performed in the study area. The red and yellow lines delimit
the portions of investigated vineyard cultivated, respectively, with red grapes and white grapes.

Figure 3. Georeferenced orthomosaic derived from the processing of the photograms acquired during
the airborne survey performed in the study area. The red line indicates the sample parcel used for
the identification and testing of the vegetation indices (see Section 2.3).

2.3. Data Processing

To detect the plants exhibiting grapevine yellows and EC symptoms through leaf
color variations, an automatic analysis process has been developed. This process relies on
calculating spectral indices derived from Red (R), Green (G), and Blue (B) spectral regions
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combinations. A sample parcel of the experimental site (Figure 3), cultivated with red
grapes, was selected for identifying and testing these indices; diseased plants were visually
recognized, and their spectral response in the RGB spectral region was analyzed.

Traditionally, the Green—Red Vegetation Index (GRVI) has been used as a biomass
indicator [28]:

GRVI = P6 PR (1)
PG T PR

where pg and pg are, respectively, the reflectance value of the G (500-565 nm) and R
(625750 nm) spectral regions. The GRVI is proved to be particularly effective in this
context by distinguishing reflectance values in the green and red spectral regions, with a
typical range from —0.2 to 0.5. Higher values are indicative of healthy plants with a lush
biomass, whereas lower values suggest less vitality, as seen in dry plants [29,30].
However, after a series of tests on artificially modified images, it became clear that
relying on the GRVI alone to distinguish diseased leaves from other elements such as
shadows and man-made structures (e.g., cables and poles) proved inadequate, as chromatic
aberrations and glare in photographs further exacerbate these differentiation challenges. To
overcome this limitation, inspired by the concept of GRVI, two new indices were developed:
the Green—Blue Vegetation Index (GBVI) and the Blue-Red Vegetation Index (BRVI). These
indices combine reflectance in the green-blue and blue-red spectral regions, respectively:

GBVI = 26— P8 b))
PG+ PB

BRVI = PB PR 3)
PB t PR

where pg is the reflectance value of the B (450—485 nm) spectral region.

These indices are designed to enhance the detection of specific color changes in
plant foliage: the GBVI is particularly effective in identifying variations in the green and
blue wavelengths, while the BRVI focuses on the differences between the blue and red
spectral regions. The performed tests demonstrated that these indices are highly effective
in highlighting the reddening and yellowing of plant leaves, which are key indicators of
grapevine yellows and EC symptoms.

Thanks to automatic scanning of the values of the RGB spectral indices calculated for
each pixel of the sample parcel, threshold values were identified to discriminate symp-
tomatic from healthy plants. A trial-and-error procedure helped to define, for each index,
the following range to identify symptomatic plants: [GRVI < —0.08]; [GBVI > 0.35]; and
[BRVI < —0.42].

To fully automate the process, a software pipeline (Figure 4) was devised with the red
grape variety portion of the georeferenced orthomosaic serving as the input. This system
extracts the R, G, and B reflectance values from the entire orthomosaic to calculate the
three specific vegetation indices matrices. Upon simultaneously applying the predefined
thresholds, the binary matrix is obtained by assigning the unit value to the pixels which
passed the three threshold filters (Figure 5A-C), and the zero value to the remaining
pixels. A convolution process utilizing an all-ones kernel panning across the entire binary
matrix aids in noise reduction and signal isolation [31]. The noise manifests itself in the
binary matrix as isolated pixels or pixel blocks that dimensionally do not represent leaves
and are therefore considered irrelevant information. Consequently, noise removal is an
essential step to obtain reliable results for the identification of plants with potential FD
symptoms. The convolution process involves the application of a 25 pixels x 25 pixels
(27.5 cm x 27.5 cm) kernel, corresponding to an area of approximately 756 cm?, to the
binary matrix, with the aim of capturing details at the level of the vine leaves. A denoised



Remote Sens. 2025, 17, 2465

7 of 20

‘'ORTHOMOSAIC,

J RED MATRIX

binary matrix is derived, wherein a value of one is preserved only at locations where
the convolution output exceeded a specific threshold. The applied threshold value of
180 pixels, corresponding to ~30% of the kernel area, allows for the removal of pixels
clusters with an area smaller than 218 cm? attributable to noise and not signal due to the
leaves with potential symptoms of grapevine yellows or EC. The final output is a denoised
binary matrix distinguished in pixels valued as “symptomatic” (i.e., surviving pixels) and
as “healthy”.

S B — e }-ﬂ e/~ [ /==

GIS ENVIRONMENT

Figure 4. Software pipeline elaborated for automating the process analysis. The input is the georefer-
enced orthomosaic from which the Red (R), Green (G), and Blue (B) reflectance values are extracted
and used to compute the vegetation indices matrices. After the application of the threshold filters,
the matrices are classified to obtain a binary matrix. The convolution filter is adopted to obtain the
denoised matrix employed to produce the thematic layers in a GIS environment.

Figure 5. (A) Green—-Red Vegetation Index (GRVI), (B) Green-Blue Vegetation Index (GBVI), and
(C) Blue-Red Vegetation Index (BRVI) matrices: the colored pixels are within the threshold values
identified (GRVI < —0.08; GBVI > 0.35; and BRVI < —0.42). (D) Binary matrix with the pixels in
black resulting from the application of the three threshold filters, (E) portion of the same area in the
orthomosaic, and (F) portion of the row corresponding to the red circle which identifies the surviving
pixels in the denoised matrix denoting the presence of potential disease symptoms.

The software pipeline, from the R, G, and B extraction to the production of the denoised
binary matrix (Figure 4), was conducted on a PC with a 3.8 GHz Intel Core i7-10700K CPU
(Intel, Santa Clara, CA, USA) and an NVIDIA GeForce GTX 1660 graphics processing unit
(NVIDIA, Santa Clara, CA, USA).
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The denoised binary matrix obtained by the analysis was processed in a GIS envi-
ronment to produce three thematic layers: the instances map, the density map, and the
incidence map (Figure 4). The elaboration of these maps aims to synthesize the analysis
results and present them as products providing an immediate view of the distribution
entity of the disease.

The instances map is obtained through grid resampling: the data points of the initial
matrix are recalculated and assigned to a new binary grid with a cell size of 2.5 m x 2.5m
(i.e., 227 x 227 pixels). The output cell value is either 1 (“positive”), if it contains at least one
surviving pixel, or 0 (“negative”). The newly defined cells on the grid, called “Prediction
Boxes” (PBs), were determined to encompass an average of 3 plants. The rationale behind
the specific dimensions of the PB reflects the characteristics of the vineyard plot, such as the
inter-row distance of 2.2 m, but also accounts for the spatial accuracy attainable through
acquisition and orthomosaic processing. Furthermore, it is important to note that the choice
to communicate results at this level of resolution is deemed highly sufficient for the end
user’s needs. The critical objective is not to pinpoint which specific branch or leaf manifests
symptoms of disease but rather to accurately identify the presence of disease within a plant
or a particular area within a row. This approach ensures that the essential information
is conveyed effectively, focusing on the detection of symptomatic plants or row portions,
which is both necessary and sufficient for practical purposes in intervention strategies
considering the rapid spread of grapevine yellows.

Further resampling was applied to produce the density map and the incidence map,
which both have a spatial resolution of 10 m x 10 m. The choice of this mesh arises from
the necessity to communicate a useful and functional result for ordering and effecting
compulsory mitigation measures. The disease incidence in an area of 100 m? is indeed a
crucial parameter that the regional plant protection service of the Emilia-Romagna region
adopts to monitor the FD occurrence across the years and to guide decisions for the
prevention of the disease diffusion. The value of each cell of the density map is the number
of contained positive PBs, i.e., with diseased instances. Considering that each 10 m x 10 m
contains 16 PBs and, on average, approximately 48 grapevine plants, the incidence map is
classified as the percentage of the boxes with diseased instances.

To assess the spatial structure prior to statistical testing, the global spatial autocorrela-
tion of symptomatic PBs was evaluated using Moran’s I index, which quantifies clustering
relative to a null hypothesis of spatial randomness [32,33]. Statistical significance was
assessed via z-scores and p-values. Based on the spatial patterns revealed by this analysis,
PB-positive cells were grouped into six buffer classes reflecting an increasing distance from
vineyard boundaries. This classification enabled the investigation of spatial trends in PB
distribution, accounting for the edge effect, a recurrent phenomenon in studies on the
epidemiology of grapevine yellows [34,35]. Given the binary nature of the data, indicating
the presence or absence of positive PBs within each 10 x 10 m cell, and its skewed, zero-
inflated distribution, the Kruskal-Wallis non-parametric test was applied to assess whether
positive PB occurrence differed significantly across distance classes [36]. To further examine
differences in PB-positive cell proportions between specific buffer pairs, a Fisher’s exact
test was conducted using 2 x 2 contingency tables [37]. This approach, particularly suited
for categorical and unbalanced datasets, is widely adopted in viticultural studies to explore
associations between symptom presence and environmental or agronomic variables [38].

3. Results

The input orthomosaic (1.24 - 10° pixels) was processed to obtain the denoised binary
matrix in a total computing time of ~65 min. Applying only one index between the
GRVI, GBVI, and BRVI with the previously identified threshold’s values ([GRVI < —0.08];
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[GBVI > 0.35]; and [BRVI < —0.42]) would have resulted in the selection of 26% of the pixels
for the GRVI, 17% of the pixels for the GBVI, and 8% of the pixels for the BRVI (first, second,
and third rows of Table 1). The simultaneous application of the three filters instead resulted
in the selection of just 0.4% of the input pixels (fourth row of Table 1), with the convolution
filter reducing this percentage even more (0.001% of the orthomosaic input pixels, fifth row
of Table 1).

Table 1. Number of input and output pixels for each matrix resulting from the software pipeline.
For the GRVI, GBVI, and BRVI matrices the filtered pixels have values <—0.08, >0.35, and <—0.42,
respectively. The filtered pixels of the binary matrix (i.e., the input pixels of the denoised binary
matrix) passed all three threshold filters simultaneously. The application of the convolution filter
selected the pixels of the denoised binary matrix.

Matrix N° of Input Pixels N° of Filtered Pixels
GRVI 1.37 - 10° 3.61-108
GBVI 1.37 - 10° 2.30 - 108
BRVI 1.37 - 10° 1.02 - 108
Binary 1.37 - 10° 4.53 - 106
Denoised binary 4.53 - 10° 1.06 - 10*

The resampling of the denoised binary matrix originated the instances map with
2.73 - 10* PBs with zero value (“healthy”); the 99 PBs with value one (“symptomatic”)
contains anywhere from 1 to 265 surviving pixels (Figure 6A). Half of the PBs contain less
than 20 surviving pixels (~24 cm?) and only 5% contains more than 180 surviving pixels
(~218 cm?).
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Figure 6. (A) Frequency distribution of the surviving pixels in the Prediction Boxes (PBs) of the in-
stances map. (B) Frequency distribution of the PBs, with at least 1 surviving pixel, in the 10 m x 10 m
cells of the density and instances map.

The density and incidence maps, obtained from further resampling to 10 m x 10 m,
contain 1488 cells with healthy PBs. The remaining 58 cells contain anywhere from one to
eight symptomatic PBs, where most of the cells (66%) contain only one symptomatic PB
(Figure 6B).

The thematic maps obtained from the processing of the data reveal that the inves-
tigated vineyard exhibits a sparse and confined presence of symptomatic plants. These
findings highlight that this site is not in a critical situation regarding the general spread of
grapevine yellows.

In detail, the maps show that the higher prevalence of positive PBs is recorded in two
limited portions of the vineyard (Figure 7A), specifically in the northeastern (Figure 7B)
and in the western areas (Figure 7D); more sparse and limited occurrences are present in
the southwest (Figure 7C). The observation of low infection rates at scattered points could
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be indicative of primary infections, which typically occur in case of boundary infections
due to incoming infected vectors [39]. This evidence could suggest performing additional
monitoring activity to the surrounding vineyards with the aim of confining the further
spread of grapevine yellows in the area.

(A)

=z
T T
@

Figure 7. Instances map: (A) entire vineyard, (B) northeastern, (C) southwestern, and (D) western
subareas. Each grid cell of 2.5 m x 2.5 m represents a Prediction Box (PB) with 0 (gray cells) or at
least 1 surviving pixel (colored cells).

An analysis of the density map (Figure 8A) reveals that the problematic zones have a
maximum density of 6-8 PBs (equivalent to approximately 38-50 m?) (Figure 8B), while
the rest of the areas exhibit lower density values (1-3 PBs, 7-19 m?) (Figure 8C). The
higher density values, translating into a maximum incidence rate between 26% and
50%, are confined to small areas in the northeast (Figure 9A,B); conversely, the west-
ern area, where there is a more homogeneous distribution of predicted symptomatic plants,
records density values that are almost always below 10% (Figure 9C). Higher values
(11-25%) are observed in more circumscribed areas in the southwest (Figure 9D). This
detailed observation underscores the spatial variability of the disease’s impact within the
vineyard, highlighting specific areas where disease management efforts could be more
intensely focused.

Edge effects were investigated by analyzing the spatial distribution of 10 x 10 cells
with positive PBs to determine whether proximity to vineyard borders influences the
occurrence of symptoms. Spatial autocorrelation analysis was used to assess the presence
of clustering and to identify the optimal spatial scale for evaluating this relationship.
Incremental spatial autocorrelation revealed that spatial correlation peaked at 20 m, which
was adopted as the basis for defining buffer classes. The global Moran’s I index (I = 0.396,
z-score = 38.19, and p-value < 0.0001) confirmed a significant clustering of symptomatic
PBs, indicating deviation from spatial randomness.
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Figure 8. Density map of the Prediction Boxes (PBs): (A) entire vineyard, (B) northeastern,
(C) southwestern, and (D) western subareas. Each grid cell of 10 m x 10 m, including 16 PBs,
is classified on the basis of the number of PBs with at least one surviving pixel.

(A)

0%
1% —10%
B 11%—25%
B 26%—50%

Figure 9. Incidence map of the Prediction Boxes (PBs): (A) entire vineyard, (B) northeastern,
(C) southwestern, and (D) western subareas. Each cell of the 10 m x 10 m grid includes 16 PBs and is
classified according to the percentage of PBs within the cell containing at least one surviving pixel
indicative of disease symptoms.

Accordingly, the vineyard area was segmented into six concentric buffer zones, each
20 m wide and progressively extending inward from the vineyard borders (Figure 10A). The
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relative proportion of cells with positive PBs across these buffers shows a clear decreasing
trend: the highest value (7.4%) was observed within the first buffer (0-20 m), followed by a
progressive reduction in subsequent zones, with no symptomatic cells detected beyond
100 m (Figure 10B). This trend supports the presence of edge effects, characterized by a
declining incidence of symptoms with an increasing distance from vineyard margins.
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Figure 10. (A) Spatial distribution of the six concentric buffer zones, each 20 m wide and extending
inward from the vineyard edges. (B) Proportion of cells with positive PBs in each buffer class.

The Kruskal-Wallis H test, used to assess whether there were significant differences
in the distributions of positive PBs among distance-based buffer groups, indicates a sta-
tistically significant difference among the groups (H = 29.764, p < 0.0001), suggesting
that at least one buffer zone differs in the proportion of positive detections. To identify
which pairs of buffer zones contribute the most to this difference, pairwise comparisons
using the Fisher’s exact test were performed. The test analysis revealed that the 20 m
buffer is significantly different from both the 60 m buffer (p = 0.0002) and the 80 m buffer
(p = 0.0008), highlighting a clear decrease in detection rates with increasing distance. These
comparisons confirm that the drop in positive PB presence is not due to random fluctuation
but reflects a statistically meaningful spatial decay pattern. The 20 m vs. 40 m comparison
also approaches significance (p = 0.0409), supporting the hypothesis of a gradient, although
the difference is less pronounced. Comparisons involving the most distant buffer (120 m)
were excluded from the analysis due to the very limited number of cells in this group
(n = 41), which reduces test reliability.

To evaluate the performance of the developed method and its accuracy in detecting
FD at the experimental site, a ground field observation campaign was conducted on the 4
October 2023. During the ground survey, expert operators detected the presence of FD, EC,
and BN symptoms in the plants and recorded the spatial coordinates to compare them with
the results obtained from the airborne image analysis. Due to logistical reasons, the field
campaign targeted only a subset of the study area which was cultivated with the red grape
variety. The subset, located in the northeastern zone (Figure 11A), contained a high number
of predicted disease instances. Despite covering only 2% of the study area, the selected
path allowed for the verification of about half of the instances identified by the analysis.

The ground observation path (Figure 11A) was planned to ensure the examination
of the area most likely to contain diseased plants. Throughout this process, instances
were verified as either true or false positives based on field observations; at the same time,
observed diseased plants located in predicted boxes reported as not including symptoms
in the instance map were recorded as false negatives.
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Figure 11. The area of the experimental site investigated through the field ground observation
campaign. (A) Path followed and location of the plants with observed symptoms of grapevine
yellows (FD and BN) and trunk disease (EC). (B) Spatial distribution of the Prediction Boxes (PBs)
resulted in agreement (TP and TN) or in disagreement (FP and FN) with the ground observations.

To quantify the observations, a confusion matrix was constructed using a regular grid
of 2.5 m x 2.5 m, covering a width of 7.5 m centered on the inspection path (Figure 11B).
This grid was designed to mirror the operator’s field of view, considering both the rows of
vines that were inspected directly and those adjacent, totaling four rows. The confusion
matrix categories include the following [8] (Figure 11B):

e  True Positive (TP = 19), representing PBs with both actual and predicted symptomatic
plants;

e  False Negatives (FN = 15), representing PBs with actual symptomatic plants observed
in the field but not predicted;

e  False Positives (FP = 30), representing PBs with predicted instances not observed in
the field;

o  True Negatives (TN = 794), representing PBs without symptomatic plants, aligning
with both field observations and predictions.

In detail, 2 possible cases of FD or BN and 32 of EC were observed (Figure 12):
1 of the FD or BN cases was correctly identified by the analysis (TP), while among the EC
cases, 17 were classified as TP and 15 as FN. This inclusion is critical due to the chromatic
similarity in symptoms presented by these diseases when compared to FD. It is important
to note that only molecular diagnosis can accurately differentiate FD and BN, as field
observations based on visible symptoms alone may not provide the specificity necessary
for distinguishing them [3].

The accuracy of the results obtained was quantified using the metrics, ranging between
zero and one, reported in Table 2. The classification accuracy of 95% reflects the robustness
of the system, with the specificity (0.96) and sensitivity (0.56) metrics suggesting that
the system demonstrates an excellent capability in differentiating between healthy and
symptomatic plants, and it has a good ability to identify the symptomatic plants (Table 2).
The observed low Positive Predictive Value (PPV) of 0.39, attributed to the relatively high
number of FP (30), suggests that the system adopts a cautious approach in the identification
of symptoms associated with grapevine yellows. This conservative tendency ensures
minimal risk of overlooking diseased plants but may lead to a higher rate of false alerts.
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On the other hand, the high Negative Predictive Value (NPV) of 0.98 reflects the system’s
outstanding performance in confirming the absence of disease, indicating a robust ability
to identify plants that are indeed healthy.

Figure 12. Plants observed during the ground field campaign with grapevine yellows and trunk
disease symptoms: (A) FD or BN and (B) EC.

Table 2. Metrics adopted to compare the results obtained from the process analysis and from the
ground field observations. Adopting the definition, the values are calculated on the basis of the
True Negative (TN), True Positive (TP), False Negative (FN), and False Positive (FP) of the confusion
matrix in Figure 11.

Metric Definition Value
Accuracy (TP + TN)/(TP + FN + TN + FP) 0.95
Specificity TN/(TN + FP) 0.96
Sensitivity TP/(TP + FN) 0.56

Positive Predicted Value

(PPY) TP/(TP + FP) 0.39
Negative Predicted Value

(NPV) TN/(TN + EN) 0.98

The frequency distribution of surviving pixels within the validated PBs, classi-
fied as TP and FP (Figure 13), mirrors the trend observed in the entire PB population
(Figure 6A). The PBs detected as TP typically include between 1 and 100 surviving pix-
els, underscoring the algorithm’s ability to detect early signs of discoloration with high
spatial resolution. In contrast, PBs with more than 100 surviving pixels, exclusively as-
sociated with FP and concentrated in the northeastern sector of the vineyard, suggest a
saturation effect: the algorithm, when exposed to extensive contiguous areas of reflectance
anomalies, loses its capacity to discern early, localized disease signals. These areas likely
correspond to widespread stressors unrelated to early-stage yellowing, such as senescent
foliage or unmanaged inter-row vegetation. Moreover, the spatial convolution kernel
used in the denoising step effectively removes isolated noise without inducing systematic
oversegmentation, confirming its role in enhancing detection robustness.
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Figure 13. Frequency distribution of surviving pixels within the Prediction Boxes (PBs) validated
during the ground-truth field campaign. Bars are divided into True Positives (green), representing
PBs correctly matching symptomatic vines in the field, and False Positives (red), referring to PBs not
associated with any confirmed symptoms.

4. Discussion

Grapevine yellows (FD and BN) and trunk disease (EC), with their rapid spread and
severe potential damage in vineyards in European regions, e.g., Emilia-Romagna (Italy), are
a major concern for grape producers. While visual inspections in the field combined with
sample collection remain the primary approaches for disease monitoring, these methods
are often time-consuming, costly, and impractical for covering extensive vineyard areas.

Remote sensing using UAVs, aircraft, or satellites supports large-scale disease de-
tection [40] but has certain limitations. UAVs present notable constraints such as their
limited battery life, which restricts flight autonomy and the total area that can be covered
during a single mission [41,42]. Similarly, the low spatial resolution of freely accessible
satellite imagery (order of meters) hinders the precise differentiation between vine rows
and inter-row cover crops and requires extensive pre-processing and calibration, while
persistent cloud cover often causes data gaps, limiting the effectiveness of satellite-based
monitoring [43-45]. In this pilot study, an airborne survey of a 17-hectare red grape vine-
yard was completed in a 17 min flight, a task that would have required approximately ten
days for manual inspection, demonstrating the efficiency and scalability of aerial surveys
in disease surveillance.

The use of the VIS region is prioritized: the development and the synergetic use of
spectral indices based on RGB spectral regions (GRVI, GBVI, and BRVI) showed good
efficacy in identifying symptomatic plants comparable to traditional field methods. Firstly,
RGB imagery offers a spatial resolution at least an order of magnitude greater than NIR.
Additionally, the RGB analysis mimics the agronomist’s field approach, where yellows and
reds are identified based on a visible spectrum observation.

Generally, hyperspectral imaging offers detailed spectral information for disease detec-
tion, but the large data volumes require extensive computational resources [20] impeding
their scalability and efficiency in real-world viticultural contexts. In this sense, Ref. [17]
emphasized the need for efficient pipelines to process hyperspectral high-resolution UAV
data. Machine learning algorithms, such as convolutional neural networks and support
vector machines, amplify processing requirements due to the need to train on large inputs.
Indeed, deep learning models often risk overfitting on limited data, reducing their gener-
alizability [18,46], and their high computational requirements demand costly hardware.
Recently, feature selection methods like genetic algorithms [18], dimensionality reduc-
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tion and noise filtering [47,48] have attempted to address these limitations. In contrast,
the proposed RGB approach can be calibrated using just a single sample parcel, signifi-
cantly reducing the time and resources needed. The automated analysis processed the
1.24 - 10 pixels of the orthomosaic in 65 min, identifying 99 prediction 2.5 m x 2.5 m boxes
as showing signs of disease.

The spatial distribution of symptoms revealed a marked edge effect, with a signif-
icantly higher occurrence near vineyard edges. This finding was supported by spatial
autocorrelation metrics and confirmed by statistical tests (Kruskal-Wallis and Fisher’s exact
test), indicating a non-random, distance-dependent pattern of symptom presence. This
spatial pattern is consistent with previous studies, which identified the vineyard border,
particularly those adjacent to herbaceous vegetation such as nettle, as primary sources of
phytoplasma inoculum due to the higher density of grapevine yellows vectors, typically
found along these edges.

The accuracy of the results of the proposed method is evaluated, with an ad hoc
ground-based survey, in terms of overall accuracy (0.95) and specificity (0.96) comparable
to the best-performing methods in different studies. For instance, in Ref. [18], the highest
classification accuracy of 0.96 was achieved using genetic algorithm features with a logistic
regression classifier, while a slightly lower accuracy of 0.85 was obtained with ensemble-
selected features. Ref. [14] achieved an accuracy exceeding 0.96 using the best model com-
bination of the successive projection algorithm, vegetation indices, support vector machine,
and discriminant analysis specifically tailored to grapevine varieties. Similarly, Ref. [15]
reported the highest specificity values (0.99) using a Vegetation Index-based approach;
lower values (0.71-0.92) were obtained using different methods based on single spectral
bands or biophysical parameters. In addition to the variability in specificity, they obtained
sensitivity values ranging from 0.46 to 1.0 depending on the method used, highlighting the
variability of results across different approaches. In contrast, our method yielded a lower
sensitivity value of 0.56, suggesting room for improvement in detecting symptomatic plants.
To address this limitation and enhance model performance, a threshold-based exclusion of
saturated PBs could be implemented to reduce FP. This strategy relies on the identification
of PBs overly affected by non-specific spectral responses, such as those induced by severe
vegetative stress unrelated to disease symptoms (e.g., senescent leaves or dense inter-row
weeds). The precise detection of such saturation patterns would require the development
of deep learning models trained on datasets enriched with representative examples of
these conditions. Nevertheless, the overall performance of our approach, particularly in
terms of specificity, remains competitive, reinforcing its potential in disease surveillance
within vineyards. A dedicated study was conducted to evaluate how changes in threshold
values of spectral indices and the convolution filter affect the accuracy evaluation. The
pipeline analysis was repeated by adopting threshold values within the ranges defined for
the sample parcel (GRVI < [-0.10; —0.07]; GBVI > [0.32; 0.35]; and BRVI < [—-0.42; —0.40])
with steps of 0.01. The maximum variability observed in the computed TP, FP, FN, and
FP leads to a value of 0.92 for the specificity and 0.38 for the sensitivity. Additionally, the
effect of varying the convolution filter threshold (from 20% to 40% of the kernel area) on FN
detection was tested while keeping the spectral indices constant. Lowering the threshold
to 20% did not affect TP or FN detection but markedly increased FP (116), reducing speci-
ficity to 0.86. Conversely, increasing the threshold to 40% reduced FP to 8, but drastically
decreased TP (4) and increased FN (30), resulting in a sensitivity of only 0.12.

It is important to note that the 57-day lag between airborne and ground surveys
(due to logistical reasons related to field operations and beyond our control) could have
implications on the results obtained. Symptoms of grapevine yellows and EC become more
visible over time, possibly causing the ground survey to detect cases not visible in the
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earlier airborne survey and explaining the FN occurrences. A similar temporal effect was
observed in Ref. [14], where two acquisition campaigns conducted in early August, when
symptoms were not yet fully visible, and the second in September, during the late growing
season, revealed a significant increase in symptom visibility in the latter phase.

The inability of airborne surveys to distinguish between FD, BN, and EC due to
overlapping symptoms limits disease management strategies. While EC symptoms are
easily recognizable during the visual survey, BN and FD share visual symptoms like leaf
discoloration and reddening, making their discrimination very challenging in remote
sensing-based detection. In such cases, laboratory analyses (e.g., molecular analysis)
become essential to confirm the presence of phytoplasma within the plant [8,18,46,49].
Despite this limitation, airborne surveys offer significant advantages by providing rapid
and comprehensive spatial coverage, enabling the early identification of potential problem
areas across large vineyard plots. Additionally, the high-resolution data collected can
support strategic planning and resource allocation. Complementing airborne surveys with
targeted field inspections strengthens early detection and minimizes economic losses from
false positive eradications [40].

This approach paves the way for the development of an early warning system, sig-
nificantly impacting viticulture by providing growers with a powerful tool for disease
management, ultimately leading to healthier vineyards and improved grape quality [50].
Looking forward, the next step is to apply this approach (i.e., airborne acquisitions and
the automated analysis method) on larger areas and other varieties of red grapes, thus
validating their generalizability in different environmental and cultural contexts.

Our airborne imaging system can survey up to 60 hectares of vineyards per hour.
The Forli-Cesena province, covering 2377 km?, hosts approximately 5000 highly scattered
vineyards with an average size of 1.2 ha, resulting in a highly scattered spatial distribution,
posing a significant monitoring challenge.

Moreover, the method has the potential to be applied to satellite image datasets
with sufficient resolution to investigate vineyards details, offering a scalable solution for
monitoring larger geographical areas and different crop types [51,52].

5. Conclusions

This work presents a pilot study about the use of high-resolution airborne imaging for
the detection of grapevine yellows (Flavescence dorée and Bois Noir) and trunk disease
(Esca Complex) in a vineyard in Emilia-Romagna (Italy). The primary objective was to
develop a cost-effective and automated methodology for the early detection of grapevine
disease in vineyards utilizing airborne-acquired RGB imagery, thereby eliminating the
reliance on costly multispectral and hyperspectral sensors.

The chosen flight parameters successfully provided images with a high spatial res-
olution, marking a crucial step in the methodological framework. Given the centimetric
resolution required to discern symptoms, the analysis outputs—instance, density, and
incidence maps—stress the necessity of consolidating results to effectively communicate
findings, guiding actionable measures. These thematic maps reveal detailed views of the
spatial distribution of grapevine disease, facilitating focused and strategic field interven-
tions. The identification of isolated cases, potentially indicative of primary infections and
difficult to detect through ground surveys, is critical in preventing the spread of diseases to
unaffected areas. Benefitting from these findings, farmers and specialized technicians can
focus their time-consuming ground inspections on areas where symptomatic plants have
been identified, providing strategic direction for monitoring these symptomatic zones. In
addition, the integration of spatial autocorrelation metrics and statistical testing confirmed
the presence of edge effects, highlighting a significant relationship between symptom oc-
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currence and proximity to vineyard borders, an aspect to be considered in both surveillance
strategies and disease containment planning

By offering an accessible and scalable monitoring tool, this study contributes to the
advancement of sustainable viticulture, enabling efficient disease mapping and early-stage
detection, facilitating real-time decision-making in vineyard management. Furthermore,
this research serves as a preliminary step toward designing a systematic approach for
future aerial surveys aimed at the large-scale targeting of disease detection and man-
agement with the aim of providing a comprehensive evaluation of the method’s robust-
ness and applicability under diverse environmental conditions, phenological stages, and
grape varieties.
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