
DOI 10.1393/ncc/i2025-25275-x

Communications: SIF Congress 2024

IL NUOVO CIMENTO 48 C (2025) 275

Advanced image processing techniques for satellite and airborne
data analysis

G. Piparo(1), G. A. Anastasi(2), N. I. Elek(3)(4), G. Hasnain(5)(6),
D. Marletta(7), A. Midolo(7), V. Strati(3)(4), E. Tramontana(7)
and A. Tricomi(1)(2)(8)

(1) Istituto Nazionale di Fisica Nucleare (INFN), Catania Section - Catania, Italy
(2) University of Catania, Department of Physics and Astronomy “Ettore Majorana”

Catania, Italy
(3) University of Ferrara, Department of Physics and Earth Science - Ferrara, Italy
(4) Istituto Nazionale di Fisica Nucleare (INFN), Ferrara Section - Ferrara, Italy
(5) University of Ferrara - Ferrara, Italy
(6) University of Trento - Trento, Italy
(7) University of Catania, Department of Mathematics and Informatics - Catania, Italy
(8) Centro Siciliano di Fisica Nucleare e Struttura della Materia (CSFNSM) - Catania, Italy

received 11 July 2025

Summary. — The burgeoning space economy and the extraction of satellite and
airborne data are transforming industries and environmental monitoring. This pa-
per describes activities conducted at the National Research Centre for High Perfor-
mance Computing, Big Data, and Quantum Computing (ICSC), developed within
the framework of Working Group 6 (WP6), “Cross-Domain Initiatives and Space
Economy” under Spoke 2, “Fundamental Research and Space Economy”. It focuses
on three aerial image processing methodologies: spectral index-based image pro-
cessing, deterministic learning algorithms, and advanced deep learning techniques,
highlighting their contributions to environmental monitoring.

1. – Introduction

The ever-increasing availability of satellite and airborne data provides unprecedented
opportunities for addressing global challenges in environmental monitoring, agriculture,
and renewable energy. In this work, we present three innovative methodologies aimed at
leveraging these data sources to solve specific problems:

• The use of spectral indices to detect and monitor vineyard diseases, enabling early
intervention and reducing manual labour.

• A deterministic approach for identifying photovoltaic (PV) panels, optimising com-
putational resources while maintaining high accuracy.
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• Advanced deep learning models to detect and estimate the damage severity of burnt
areas in satellite imagery, offering actionable insights for disaster management.

These methodologies demonstrate the power of combining remote sensing with innovative
computational approaches to achieve scalable, accurate, and efficient solutions.

2. – High-resolution image processing for disease detection in vineyards

A pilot study was carried out to use high-resolution airborne imaging to investigate
the early detection of grapevine yellows (Flavescence Dorée and Bois Noir) and trunk dis-
ease (Esca Complex) in vineyards [1,2]. While traditional ground-based surveys are time
consuming and inefficient, airborne surveys using spectral indices have effectively identi-
fied early symptoms through leaf colour changes. An acquisition survey was performed in
Emilia-Romagna (Italy) using a Radgyro aircraft equipped with environmental sensors,
covering 17 hectares of Sangiovese grapevine. The goal was to identify the reddening of
vine leaves in the acquired images, one of the main symptoms of Flavescence Dorée, Bois
Noir and Esca. The analysis pipeline, depicted in fig. 1, starts with calculating RGB
vegetation indices including the Green-Red Vegetation Index (GRVI), Green-Blue Veg-
etation Index (GBVI), and Blue-Red Vegetation Index (BRVI) in orthomosaic images.
These indices were selected to detect leaf colour changes indicative of disease symptoms,
such as yellowing or reddening. Threshold filters are applied to isolate specific ranges of
each index, resulting in a binary matrix which undergoes a convolution filter to denoise
and highlight symptomatic regions. The resolution offered by remote sensing data, as
demonstrated in our study, is highly advantageous for generating maps. The output
includes a denoised binary matrix overlaid on the original image, an instances map, a
density map and an incidence map (fig. 2) in a grid with a cell size of 10 m × 10 m. The
results showed a specificity of 0.96 and a sensitivity of 0.56 when comparing the detected
areas with ground truth data resulting in an overall classification accuracy of 0.95. This
indicated a strong capability to differentiate between healthy and symptomatic plants
and a good ability to identify the symptomatic plants. The proposed method forms the
foundation for an early warning system that can support on-the-ground monitoring and
assist authorities in making strategic decisions, improving the efficiency of interventions
and allowing the reduction of the impact of vineyard diseases on crops. The integra-
tion of such technology into disease management strategies could significantly reduce
the economic impact of these diseases, which are major threats to grapevine health and
productivity.

3. – Deterministic learning algorithms for object identification

Remote sensing is valuable for estimating the potential green energy production in
a community by detecting and calculating the number of PV panels. A deterministic
algorithm is proposed for identifying PV panels in aerial images without using machine
learning [3]. By analysing colour distributions, the method quickly detects panels based
on characteristic colours, even when these overlap with other elements, without needing
large annotated datasets. It automatically selects the significant PV colours, ensuring
efficiency across varied environments. The pipeline involves:

• Colour extraction: PV images from [4] are classified to extract characteristic RGB
values from labelled regions (LR). Only colours more prevalent in LR than in the
background (BR) are kept, and extreme pixels (very dark or highly saturated) are
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Fig. 1. – Software pipeline elaborated for automating the process analysis. The input is the
georeferenced orthomosaic from which the red (R), green (G) and blue (B) reflectance values
are extracted and used to compute the vegetation indices. After the application of the threshold
and convolution filters, the matrices are classified to obtain a denoised matrix employed to
produce the thematic maps in a GIS environment.

excluded. The outcome is a collection of RGB colour values characteristic of PV
panels, which are subsequently searched for in an unknown image, as seen in the
green-highlighted pixels in fig. 3.

• Background removal : Colours common to both LR and BR are discarded, focusing
on unique panel features.

• Tile-based refinement : A sliding 5 × 5 px tile turns blue if over 75% of its pixels are
green, and an 11 × 11 px tile further refines the detection to confirm consistently
identified regions.

The results, reported in fig. 4, show that the deterministic algorithm outperforms
several machine learning models in both evaluation metrics and speed, achieving high
recall and interpretability without extensive annotations. This approach is especially
suited for areas with limited computational resources or where transparency is crucial.

Fig. 2. – Incidence map of the experimental site. Each grid cell of 10 m × 10 m is classified on
the basis of the number of potential symptomatic plants detected.
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Fig. 3. – Detection of photovoltaic (PV) panels using a deterministic algorithm based on pixel-
level analysis. The left image shows the original aerial image of a photovoltaic installation,
highlighting the physical layout of the panels within the surrounding landscape. The right
image presents the output of the deterministic algorithm, where green overlays indicate pixels
successfully identified as part of the photovoltaic panels. Figure from [3].

4. – Deep learning for satellite imagery

Deep learning models have shown great promise in large-scale environmental moni-
toring, particularly in detecting and mapping burnt areas using satellite imagery. The
combination of multispectral images and advanced deep learning architectures provides
powerful tools for disaster management and recovery planning. The focus of this study
is on the detection and mapping of burnt areas from Sentinel-2 images, provided under
the Copernicus Programme [5] and accessible via the Sentinel Hub API [6]. The dataset
comprises 114 multispectral images (all 12 Sentinel-2 spectral bands) of size 2048 × 2048
pixels with a spatial resolution of 10 meters, sourced from the Copernicus Emergency
Management Service (EMS [7]). These images cover various fire events across Europe,
primarily in the Mediterranean region. For each fire event, a temporal series of three

Fig. 4. – Performance metrics and execution times for PV panel detection across different
datasets. The upper table summarizes detection performance across six land-cover types. The
highest values for each metric are highlighted, with a comparison with a benchmark study [4].
The lower table details the average execution time per image for each processing phase in the
detection pipeline. Figure from [3].
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Fig. 5. – Temporal sequence and prediction results of burnt areas using satellite imagery and
ConvLSTM-based deep learning. The top row illustrates the temporal progression of fire impact,
from “Before Fire”, through “Near Fire”, to “After Fire” (post-event burnt area), with the model
predictions shown in the final panel. The blue outline indicates the ground truth perimeter of
the burnt region provided by the Copernicus EMS [8], while the predicted areas are overlaid
in red, demonstrating strong alignment with the ground truth. The bottom left panel presents
the Receiver Operating Characteristic (ROC) curve with a highlight on the AUC metric. The
bottom right table summarizes evaluation metrics for the model.

images was used: one before the fire, one during or near the fire, and one after the fire.
The images were divided into 256 × 256 pixel patches, and only patches containing at
least 1% burnt area were included in training and evaluation. To enhance the robustness
of the model, data augmentation techniques, such as random rotations and mirroring,
were applied. The proposed architecture is a U-Net-like model with Convolutional Long
Short-Term Memory (ConvLSTM) layers. This design is particularly effective for spa-
tiotemporal data, as it combines the strengths of convolutional neural networks (CNNs)
for spatial feature extraction and LSTMs for capturing temporal dependencies. A 5-
fold cross-validation was performed on the training dataset of 95 images to ensure the
model robustness. The remaining 19 images were reserved for final testing to evaluate
performance on unseen data. The model demonstrated stable convergence and general-
ization, with loss and accuracy curves stabilising around 75–100 epochs. The evaluation
metrics highlight the model’s strong performance, with an overall accuracy of 94%, and
precision, recall, and F1 scores at 95%. The Dice coefficient and Jaccard index values
are 0.92 and 0.86, confirming the effective segmentation of burnt areas. The ROC curve
achieved an AUC score of 0.94, demonstrating strong discriminatory power. The top
panel of fig. 5 shows the temporal progression of fire impact, with model predictions
closely aligning with ground truth burnt areas, while in the bottom panel, the ROC
curve and the evaluation metrics are reported. These findings underscore the potential
of deep learning techniques in large-scale environmental monitoring and post-disaster re-
covery. By leveraging the temporal and spectral richness of Sentinel-2 data, the proposed
approach provides accurate and actionable insights for mitigating the impact of wildfires
and supporting recovery efforts.
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5. – Conclusions and future prospects

The three presented projects underscore the potential of advanced computational
methods using satellite and aerial imagery for diverse tasks, ranging from agriculture to
renewable energy and environmental monitoring. Future work will focus on integrating
the strengths of these projects to explore cross-domain applications and synergies. A key
area of research will be utilising multi-satellite data, combining imagery from platforms
with varying spectral bands, spatial resolutions, and revisit times. For instance, integrat-
ing high-resolution Sentinel-2 data with other satellite platforms offering complementary
capabilities, such as Synthetic aperture radar or thermal imaging, could enhance the
precision and scope of monitoring tasks. Such an approach could contribute to vineyard
disease detection, improve the temporal tracking of burnt areas, and provide even more
reliable identification of photovoltaic panels. Collaborative experiments will also investi-
gate joint data processing pipelines that unify methodologies, such as integrating spectral
index-based techniques with deterministic learning and deep learning frameworks. This
could pave the way for unified systems capable of addressing multiple environmental and
industrial challenges within a single platform. By fostering collaboration between these
projects and leveraging the full spectrum of satellite data, these efforts will contribute to
creating comprehensive and efficient solutions for environmental monitoring and resource
management, ultimately supporting sustainable development on a global scale.
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