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A B S T R A C T   

The ternary nature of soil texture, defined by its proportions of clay, silt, and sand, makes it challenging to 
predict through linear regression models from other soil attributes and auxiliary variables. The most promising 
results in this field have been recently achieved by Machine Learning methods which are able to derive non- 
linear, non-site-specific models to predict soil texture. In this paper we present a method of constructing a 
pair of Deep Neural Network (DNN) algorithms that can predict clay and sand soil contents from Airborne 
Gamma Ray Spectrometry data of K and Th ground abundances. 

We tested the algorithm’s hyperparameters through various configurations to optimize the DNNs’ perfor-
mance, effectively avoiding underfitting and overfitting of the models. This led to the creation of a high- 
resolution 20 m × 20 m soil texture map from dense AGRS data, significantly refining the previous map’s 
granularity. The application of the obtained DNN models to unseen sites can be supported by future training on 
additional textural classes.   

1. Introduction 

In recent years, Machine Learning (ML) techniques compete with 
classic methods of statistical analysis especially in the study of complex 
ecosystems like the soil and its features. The complexity of soil texture 
characterization as a mix of three components (i.e., sand, silt, and clay) 
is being investigated successfully with ML through image analysis 
(Azadnia et al., 2022; Zhao et al., 2022) and regression of soil attributes 
(Wu et al., 2018; Zhang et al., 2020). 

Although the high cation exchange capacity of some clay minerals 
soils facilitates the retention of positively charged ions, such as those of 
K and Th radioelements, there are no a priori models based on a positive 
correlation between these radioelements and the presence of clay. In the 
linear regression models that have been empirically studied in the last 
decade (Elbaalawy et al., 2016; Mahmood et al., 2013; Petersen et al., 
2012; Spadoni and Voltaggio, 2013; Van Der Klooster et al., 2011) a 

clear site-dependency emerges. This limitation can be overcome by 
applying ML techniques as showed in recent studies based on a small 
dataset size which is not well suited for ML tasks (Heggemann et al., 
2017; Priori et al., 2014). 

Facing this issue, this work utilizes Airborne Gamma-Ray Spectros-
copy (AGRS), a technique to efficiently collect big amounts of radio-
metric data, to study correlations between clay and sand soil contents 
and K and Th abundances through Deep Neural Network (DNN) 
algorithms. 

2. Materials and methods 

2.1. Study area and data taking 

The Mezzano Lowland (Emilia-Romagna, Italy) is a flat and 
reclaimed area of ~189 km2 fully devoted to agricultural activities. The 
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data-taking has been carried out in this area using the Radgyro (Bal-
doncini et al., 2017, 2018), an experimental aircraft equipped with a 
modular 16 L-NaI(Tl) scintillation detector. 

The survey has been divided into three flights carried out at a mean 
velocity of 102 km/h and at a mean height of 104 m, totalling 4 h and 45 
min of flight time and 482 km linear distance covered (Maino et al., 
2022). The 1469 data of K and Th abundances derived from an equal 
number of 10 s integrated AGRS spectra were spatialized using ordinary 
kriging with 500 m × 500 m pixels. To each of the 723 obtained pixels, 
soil texture (percentage of sand, silt, and clay) was assigned as ground 
truth data derived from the regional soil map of the Emilia Romagna 
Region (RER) (Tarocco, 2015). 

The combined AGRS and RER data (723 data total) have been 
divided into a training dataset (578 data), a validation dataset (72 data) 
and a test dataset (73 data), following an 80:10:10 split (Le et al., 2023; 
Wang et al., 2022) via random sampling, making sure that all data 
subsets were evenly distributed in the entire study area. 

2.2. DNN’s basics 

ML algorithms are designed to train on data features (here K and Th 
measured abundances) over a certain number of epochs (Table 1). 
During each epoch an algorithm updates its weights and biases (pa-
rameters) to make better and better estimations of the data labels (here 
clay and sand contents from the RER soil texture map). At the end of the 
entire training phase the algorithm has learned a model to predict data 
labels starting from data features without any a priori restrictions. 

The calculations of a DNN are performed in its processing units, 
called nodes, that are organized in a series of layers. In a DNN, there are 
three types of layers: an input layer,1 a series of hidden layers2 and an 
output layer.3 In a layer l each node i receives inputs xj from each node j 
of the preceding layer l – 1. The node i calculates a value yi given by: 

yi =
∑

j
wijxj + bi.

where wij is a weight that depends on both the input xj and the node i, 
while bi is a node-specific bias. 

The value yi gets then fed to an activation function (Table 1) which 
transforms it to assist the model in learning the intricate patterns present 

in the input data. 
In this work, we adopt the Rectified Linear Unit (ReLU) (Nair and 

Hinton, 2010) as the activation function for all hidden layers because of 
its wide use in regression problems (Sharma et al., 2017). This enables us 
to introduce non-linearity in the model, as the ReLU function sets all 
negative yi values to 0 while leaving unmodified all positive ones. 

The output value zi (which represent an input of the following l + 1 
layer) can therefore be written as: 

zi = f (yi)=max(0, yi),

where f represents the ReLU function. 
We developed a pair of independent DNNs predicting clay and sand 

soil contents respectively, both starting from K and Th abundance data 
as inputs. 

In Table 1 we report the list of hyperparameters for our DNNs, which 
are all the non-trainable settings decided before training begins (Yang 
and Shami, 2020). Excluding the number of epochs and the activation 
function, all the hyperparameters values have been chosen after an 
optimization process aimed at finding the best configuration specifically 
for our task. The number of epochs has been automatically chosen by 
applying the Early Stopping regularization method. This method 
permitted to set a minimum value of 1 (to be achieved in the span of 5 
epochs) for the improvement of the loss function between clay and sand 
contents predictions and ground-truth data. When, at any point during 
training, this condition wasn’t met, the Early Stopping method inter-
rupted the training process and restored the parameters that gave the 
lowest loss value recorded. 

Both DNNs have been tested with various hyperparameters values to 
find the optimal configuration in terms of model prediction accuracy, 
computational time and model complexity. 

Since in our study the data labels distribution doesn’t present out-
liers, the prediction accuracy is inferred by evaluating the value of the 
loss function at convergence, where the loss function is defined as the 
Mean Squared Error (MSE) (Mohri et al., 2018). Computational time 
depends on the convergence speed, which is determined by the number 
of epochs required to reach convergence, and on the time required for 
each epoch of training. Finally, the complexity of a model can be 
inferred via the sum of the number of trainable parameters learned by 
each layer, which can be calculated as: 

tl =(nl− 1 + 1)⋅nl,

where tl represents the number of trainable parameters of layer l, while 
nl and nl− 1 represent the number of nodes of layers l and l – 1 
respectively. 

2.3. Optimization process 

The prediction accuracy and the computational time of a DNN are 
dependent on the hyperparameters’ values adopted, that need to be 
optimized to avoid possible underfit or overfit situations. 

Underfit happens when the error between the model’s predicted la-
bels and the ground-truth labels is too high and/or doesn’t reach 
convergence. Common causes of underfit are a low learning rate value, a 
small epoch number or a too simple DNN structure (small width and 
depth). In contrast, overfit happens when the model is too heavily tuned 
on training data (e.g., too complex models, too many training epochs), 
failing to generalize to unseen data (validation dataset). 

Model error, as well as possible underfitting or overfitting situations, 
are inferred via the loss function which gets minimized by the optimizer 
updating the model’s parameters. 

Convergence to the loss minimum is helped by standardizing the 
different input data features to a similar range. This step ensures that all 
data features (in our case K and Th abundances) have a similar impact on 
the determination of the updated model parameters during training. 
Feature normalization is here performed in the input layer (first layer) of 

Table 1 
Hyperparameters of the DNN analysed in this study and their respective 
definitions.  

Hyperparameter Definition 

Width Number of nodes in a given layer 
Depth Number of hidden layers 
Batch size Number of input data processed before the model’s parameters 

are updated 
Number of Epochs Complete passages of data features through the DNN structure 
Activation 

function 
Function that takes as inputs the values calculated by a layer’s 
nodes and produces an output that is passed on to the next layer 

Loss function Function that quantifies the difference between predicted and 
ground-truth labels 

Optimizer Algorithm that adjusts the model’s parameters during training 
to minimize the loss function 

Learning rate Fraction of the optimizer-calculated parameter updates to 
apply to each parameter after a batch of input data has been 
analysed  

1 The first layer of the DNN. This layer receives raw data features as inputs 
and sends outputs to the next layer.  

2 Neither first nor last layers of the DNN. These layers receive inputs from a 
previous layer and send outputs to the next layer.  

3 The last layer of the DNN. This layer receives inputs from the last hidden 
layer and produces predictions as final outputs. 
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both developed DNNs via the following equation: 

x̂i
j =

xi
j − μj

σj
,

where x̂i
j is the normalized feature j (here either K or Th abundance) of 

the data xi, xi
j is the input feature j of the data xi, and μj and σj are the 

mean value and the standard deviation of feature j across input data. 
The training dataset has been utilized for conducting a series of in-

vestigations aimed at assessing various hyperparameters values effects 
on the training process and enhancing the DNNs’ performances via their 
optimization. 

The DNN structure has been tuned adjusting the width between the 
values 4 and 16 (kept constant throughout all hidden layers) and the 
depth between the values 2, 4, and 8 (Fig. 1a). In addition, a variety of 
batch size values have also been tested for understanding their impact 
on both convergence speed and total computational time (Fig. 1b). 
Furthermore, different algorithms are adopted as optimizers for the 
DNN, i.e., Adadelta, Adagrad, Adam, Adamw, Adamax, Nadam, Adafactor, 
Ftrl, RMSprop and Stochastic Gradient Descent (SGD) (Fig. 1c). Finally, a 
range of values from 10− 1 to 10− 4 have been studied for the effect of the 
learning rate on the training process (Fig. 1d). 

When not directly tested, the hyperparameters in all performed tests 
are those from the final configuration. 

3. Results 

The performed tests highlighted some key points to consider when 
optimizing a DNN’s hyperparameters. 

When testing for different width-depth configurations (Fig. 1a) we 
learned how complex models improve convergence speed, but at the 
cost of being more prone to overfit. It is therefore important to find the 
right balance between convergence speed and model complexity. 

The simplest DNN configuration (depth = 2, width = 4, 37 learnable 
parameters) doesn’t reach convergence within 40 epochs, while the 
most complex configuration (depth = 8, width = 16, 1969 learnable 
parameters) converges more rapidly at the expense of a substantial in-
crease in the number of parameters. The medium-sized configuration 
with depth = 4 and width = 16 has been chosen for the final DNN 
structure as a balance between convergence speed (27 epochs) and 
computational complexity. 

The test performed on the batch size (Fig. 1b) uncovered instead a 
non-linearly scaling inverse relation between total computational time 
and both convergence speed and batch size, highlighting the need to 
optimize both time and generalizability of the model in a synchronous 
way. The highest convergence speed is shown by the model utilizing the 
lowest batch size value, as this had the most opportunities to update 
internal parameters values during each epoch. This behavior is not re-
flected in the total computational time, with the model utilizing a batch 
size of 4 requiring more than double the time needed by the model with 
a batch size of 64 to complete training. Although large batch size values 
require less total computational time to complete the training process, 
we opted for the middle-ground value of 16 to both reduce computa-
tional time and prevent loss of generalizability, as large values drop the 
generalizing ability of the network (Keskar et al., 2016). 

Out of the algorithms tested as optimizers for our DNNs (Fig. 1c), not 
all showed convergence (i.e., Adadelta, Adagrad, Ftrl and Adafactor). All 
the tested algorithms have more (sometimes optimizer-specific) hyper-
parameters than simply the learning rate, so those would also need to be 
optimized especially for the non-converging algorithms. Among the al-
gorithms that produced converging models we chose Adam as the final 
DNN optimizer, with the intention of avoiding instability at 
convergence. 

When testing the effects of different learning rates on the training 
process, very high values like 10− 1 and 10− 2 produce high instability 
levels at convergence (Fig. 1d), with the loss curve referring to the 

Fig. 1. Loss curves between clay predictions and ground-truth data for variations in a) width and depth of the DNN’s structure, b) batch size, c) optimizer used, and 
d) learning rate. For each curve, hexagons mark the end of the training process when this happens before epoch 40. In panel c) only the converging loss curves 
are shown. 
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learning rate value of 10− 2 showing a bump at epoch 12. On the con-
trary, the model with the lowest learning rate value (10− 4) can’t reach 
convergence in the 40 epochs limit. The most suited learning rate value 
is therefore 10− 3, which produces the quickest stable convergence. 
Changes in learning rate values have a big impact on training, so this 
hyperparameter needs to be carefully optimized. 

The results of the previous tests have been evaluated on both the 
training and the validation datasets, where the loss curves for both the 
clay-predicting model and the sand-predicting one show no sign of 
underfit or overfit since they reach convergence (Fig. 2). 

Since the validation dataset differs in mean RER clay content (25.8 
%) and mean RER sand content (37.1 %), we normalize the models’ 
MSEs over these mean values utilizing the Coefficient of Variation of the 
Root Mean Square Error (CV(RMSE)) between ground-truth and pre-
dicted labels defined as: 

CV(RMSE)=
1
Y

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(Yi − Ŷ i)

2

N

√
√
√
√
√

,

where Y is the mean value of the ground-truth labels, Yi and Ŷ i are the i- 
th ground-truth and predicted label values respectively, and N is the 
total number of labels. When evaluated on clay and sand content pre-
dictions, we obtain CV(RMSE) values of ~0.25 and ~0.28 respectively. 
While the sand-predicting model converges to a higher MSE value than 
the clay-predicting one (Fig. 2), the normalized variations of their pre-
diction errors are actually comparable. 

The generalizability of the model was explored through an analysis 
correlating clay and sand values across 73 spatially randomly distrib-
uted data points that were not previously utilized during the training/ 
validation phases. The determination coefficients and slope coefficients 
of correlation for clay (sand) are found to be 0.53 (0.52) and 0.93 (0.91) 
respectively, as illustrated in Fig. 3, demonstrating a good agreement 
between the model’s estimations and the RER data. 

Since the AGRS dataset, thanks to its size (1469), can produce K and 
Th abundance maps that outmatch the resolution of the RER soil texture 
map (500 m ⨯ 500 m), the clay-predicting and sand-predicting models 
have been used to obtain a high resolution (20 m ⨯ 20 m) soil texture 
map (Fig. 4a), which shows the predictions classified following the 
United States Department of Agriculture (USDA) definitions (Fig. 4b). 

The obtained map shows a prevalence of Loam and Clay loam 
textural classes, followed by Sandy loam, Sandy clay loam and Clay. 

4. Conclusions 

In this work, we constructed a pair of DNNs trained on 578 K and Th 

abundance data measured via AGRS to predict clay and sand soil con-
tents in the Mezzano Lowland (Emilia-Romagna, Italy). 

Through a series of tests we optimized the final hyperparameters 
configuration, which includes 4 hidden layers composed by 16 nodes 
each, the mean squared error as the loss function minimized by the 
optimizer Adam, a learning rate of 10− 3, a batch size of 16, ReLU as the 
activation function and an epoch number determined by Early Stopping 
(27 for the clay-predicting DNN and 37 for the sand-predicting one). 
This configuration prevented both underfit and overfit of the DNN 
models, which show comparable CV(RMSE) values for clay and sand 
predicted labels (~0.25 and ~0.28 respectively). 

By applying the obtained models to the highly dense AGRS data we 
obtained a 20 m ⨯ 20 m resolution soil texture map of the surveyed area, 
improving the pre-existing 500 m ⨯ 500 m resolution RER soil texture 
map. 

Having been trained on AGRS data from soils belonging to 7 textural 
classes, both obtained models are prone to be non-site-specific, espe-
cially in the case of a supplementary future training with AGRS data 
from soils belonging to the remaining 5 soil textural classes. 

Finally, since the prediction errors are presumably related to radio-
metric and soil texture data uncertainties, a refinement of the method-
ology could implement this kind of data as inputs for further improving 
the prediction of soil texture. 
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