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Abstract: Using a novel joint inversion approach, this study tackles the challenge of accurately
characterizing subsurface electrical resistivity in vineyards, a critical and strategic aspect of precision
viticulture. For the first time, we integrate 3D Galvanic Contact Resistivity with multi-2D Capac-
itively Coupled Resistivity data. Conducted in a prestigious Sangiovese vineyard in Montalcino
(Tuscany, Italy), the data are analyzed utilizing a single algorithm capable of inverting Capacitively
Coupled Resistivity, Galvanic Contact Resistivity, and joint datasets. This approach combines data
sensitive to different depths and spatial resolutions, resulting in a comprehensive analysis of soil
resistivity variations and moisture distribution, thus providing a detailed and coherent subsurface
model. The joint inversion produced a high spatial resolution 3D resistivity model with a density
of 20.21 data/m3. This model significantly enhances subsurface characterization, delineating root
systems and correlating water distribution with resistivity patterns, showing relative variations
sometimes greater than 50%. This method reduced data misfit more effectively than individual
inversions and identified a low-resistivity volume (<20 Ω·m), extending from northeast to south,
indicating the presence of subsurface water. The systematic alternation of high and low resistivity
across vineyard rows highlights the impact of soil management activities on resistivity and supports
targeted interventions for vineyard health.

Keywords: agrogeophysics; joint inversion; galvanic contact resistivity; capacitively coupled resistivity;
precision viticulture; GCR; CCR

1. Introduction

Within Agriculture 4.0, precision viticulture integrates advanced technologies to en-
hance the efficiency, precision, and sustainability of grape cultivation. Detailed soil studies
are vital, as they impact vine health, grape quality, and productivity [1–3]. Soil properties
like moisture, texture, clay content, and structure significantly influence cultivation stages.
For instance, clay-rich soils retain more moisture, necessitating careful irrigation to avoid
waterlogging, while sandy soils require frequent watering. Fertilization is influenced by
soil texture, with clay soils holding more nutrients. Well-structured soils promote root
growth and aeration, enhancing pest control through increased microbial activity, whereas
compacted soils hinder water infiltration, affecting irrigation and pest management [4,5].
This optimizes resource use and promotes sustainability [6]. Accurate soil characterization
supports data-driven decision-making to improve long-term vineyard management [7].

Agronomic techniques widely used to obtain soil and root information often rely on
point-based or destructive methods, such as soil and root sampling and analysis [8], trench
wall excavation [8], and the installation of agro-weather networks [9]. Additionally, non-
destructive imaging systems, such as Minirhizotron root observation tubes [10], can also
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employed. While these methods provide accurate and reliable data, their main limitation
lies in the localized nature of the information they offer, making them unsuitable for
capturing spatial variability. Moreover, techniques that provide geometric and structural
root data, such as trench excavation, often require significant disruption of the planting
area, limiting their utility for improving cultivation on the specific plants under study.

In contrast, emerging agrogeophysical techniques utilize non-invasive geophysical
methods to study soil–plant–atmosphere interactions [11]. These methods include Electro-
magnetic Induction (EMI) to swiftly evaluate soil salinity and texture variations, guiding
precise fertilizer application [12]. Ground-Penetrating Radar can reveal the hidden archi-
tecture of large root systems, enhancing our understanding of crop resilience [13]. Time
Domain Reflectometry provides detailed measurements of soil water content, ensuring
optimal irrigation strategies [14]. Seismic methods uncover zones of soil compaction,
preventing root growth barriers [15], while X-ray Computed Tomography provides an
in-depth view of soil structure and porosity, vital for managing soil health [16]. Together,
these techniques supply comprehensive insights, enabling the fine-tuning of agricultural
practices for both productivity and sustainability.

Geoelectric applications are fundamental in the agrogeophysical study of vineyards,
providing non-invasive insights into subsurface features, particularly soil and root inter-
actions, with greater detail compared to traditional methods [17]. Among these methods,
electrical resistivity tomography (ERT) is especially effective in detecting variations in
soil resistivity, which correlate with key subsurface properties such as moisture content,
root structure, and soil compaction [18]. ERT operates by injecting electrical currents into
the soil and measuring the resulting voltage differences, which vary based on the soil’s
resistivity at different depths. These resistivity measurements provide indirect but valuable
information about subsurface features. While ERT does not directly map specific structures,
it reveals resistivity contrasts that can be interpreted to identify areas of higher moisture
uptake [19], soil salinity [20], and compaction [21]. These insights enable efficient water
management [22], help delineate groundwater aquifers [23], and identify clay content
distribution [24], providing valuable information for agricultural decision-making.

The ERT method relies on Ohm’s law, measuring the subsurface’s electrical resistivity
by injecting a current, recording the resulting voltage difference, and applying a proper
geometrical factor. The subsurface features and structures in the ground are identified
by analyzing the variations of the inferred resistivity [25]. Geoelectrical methods such as
Electromagnetic Induction (EMI), Galvanic Contact Resistivity (GCR), and Capacitively
Coupled Resistivity (CCR) are distinct but complementary. EMI measures soil Electrical
Conductivity (ECa) by generating an electromagnetic field that induces currents in the soil,
with the secondary field detected to estimate ECa [26]. GCR involves direct contact with
the soil using electrodes to inject a current and measure the voltage differences [27]. CCR
uses capacitive coupling to measure resistivity without direct soil contact, utilizing dipole
antennas to create and detect electrical fields [28]. To transform raw geophysical data
into meaningful subsurface models, the application of appropriate inversion techniques is
fundamental. This process iteratively refines initial models by minimizing the difference
between observed and computed resistivity values. Utilizing methods such as the damped
least-squares approach, the inversion process stabilizes solutions in ill-posed problems,
ensuring accurate subsurface characterization [29]. This method enhances spatial resolu-
tion, reduces ambiguity, and provides a comprehensive and coherent view of geological
and lithological features over extensive subsurface areas, which is essential for accurate
management and decision-making in agriculture. In the realm of geophysical inversion
techniques, joint inversion represents an advanced technique that integrates multiple meth-
ods to improve subsurface model accuracy by combining complementary data sensitivities
and spatial resolutions [30].

This paper seeks to develop a joint inversion methodology for resistivity using two
different methods: 3D CCR and multi 2D GCR. This approach is applied for the first time to
study soil features in a vineyard, aiming to enhance the spatial resolution and accuracy of



Agronomy 2024, 14, 2489 3 of 20

subsurface property characterization. Improved characterization is critical for optimizing
viticultural practices and improving vineyard management, contributing to more precise
and sustainable viticultural techniques.

2. Materials and Methods
2.1. Experimental Site

The “Il Poggione” estate vineyard, located in the municipality of Montalcino (Siena) in
the Tuscany region of Italy, serves as the study site (Figure 1). The Montalcino area is charac-
terized by a hilly terrain composed of Pliocene clays, deeply incised by watercourses, with
prevalent erosive formations, which are types of badland formations commonly referred to
in the Italian regional literature as “calanchi” and “biancane”, linked to clay substrates [31].
In addition, the area includes Quaternary deposits such as anthropogenic fills, travertine
from chemical precipitation, and lacustrine, palustrine, lagoonal, and colmatation deposits,
providing a comprehensive understanding of the local lithology and geomorphological
processes [32].
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composition, enhances the wine’s distinct profile and illustrates the high standards of 
Italian viticulture [35]. 

The selected vineyard spans 1253 ha, is south-facing, and lies on soil with variable 
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Brunello di Montalcino, a DOCG (Denominazione di Origine Controllata e Garantita: 
controlled and guaranteed designation of origin) wine distinguished by its exclusive use 
of 100% Sangiovese Grosso grapes grown in the area surrounding Montalcino. 

Figure 1. Location and layout of test site. (a) General overview of vineyard at “Il Poggione” estate,
located in Tuscany (Italy); red square encloses studied plot. (b) Grid setup for CCR (labeled by letter
“C”) and GCR (labeled by letter “G”). Base picture from Regione Toscana—Id. RT: 162-Orto2023-
66c; date 31 July 2023; pixel size 0.15 m; license CC BY 4.0. Coordinates are in WGS84-UTM 32N
(EPSG: 32632).

The soil texture at the study site was investigated through the analysis of five samples
using the Jar test method [33], resulting in an average composition of 31.8% sand, 34.9% silt,
and 33.3% clay, classifying the soil as clay loam according to the United States Department
of Agriculture soil texture classification. This classification is further supported by data
from the Toscana Region’s pedological database, which provides similar percentages for
the soil composition in the area, confirming the clay loam classification [34].

Montalcino’s unique terroir, characterized by its hilltop location and soil compo-
sition, enhances the wine’s distinct profile and illustrates the high standards of Italian
viticulture [35].

The selected vineyard spans 1253 ha, is south-facing, and lies on soil with variable
textures and a 2% average slope. The vineyard is primarily dedicated to the production
of Brunello di Montalcino, a DOCG (Denominazione di Origine Controllata e Garantita:
controlled and guaranteed designation of origin) wine distinguished by its exclusive use of
100% Sangiovese Grosso grapes grown in the area surrounding Montalcino.

The root architecture of these grapevines predominantly spans the top 60 cm of
soil, although roots can extend beyond 6 m, depending on soil composition and cultural
practices [36]. In Sangiovese (“Vitis vinifera L.”), rootstock selection is vital for enhancing
drought tolerance by enabling deeper water access [37,38]. Considering these factors, the
survey design adopts a conservative approach, as detailed in Table 1 and depicted in the
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layout presented in Figure 1b, to ensure comprehensive subsurface characterization that
accounts for potential root distribution variations.

Table 1. Summary of data acquisition parameters. A comparison of different parameters with
equivalent practical significance is provided to enhance the understanding of the applied methods.
“n” is the maximum distance between the voltage and current dipoles. “a” is the basic electrode
spacing between adjacent electrodes.

GCR CCR

Electrode distance (m) 1 Cord length (m) 1.25–5–10
Max pseudo-depth (m) 5.5 Max pseudo-depth (m) 3.5

Spread length (m) 16 Run length (m) 18
Number of spreads 6 Number of runs 6
Spread distance (m) 3 Run distance (m) 2.7

Method Dipole–Dipole Method Dipole–Dipole
Acquisition dur. (h) 0:48 Acquisition dur. (h) 2:17

Min V/I (Ω) 1.45 × 10−5 Min V/I (Ω) 1.90 × 10−5

Max V/I (Ω) 3.01 Max V/I (Ω) 1.52
Max n + 1a (m) 20 Max n + 1a (m) 7

The planting density is 4200 vines per hectare with a row spacing of 2.80 m and an
intra-row spacing of 1.10 m. The site is unirrigated, organically managed, and employs
an alternate row plowing technique. By alternating between plowed and grass-covered
rows, this approach effectively reduces grapevine vigor, which in turn minimizes the risk
of bunch rot [39]. These specific vineyard management practices exert a significant impact
on the chemical and sensory profiles of the wines, influencing attributes such as color
indices and polyphenol composition. These practices enhance the vine’s access to deep
water reserves and nutrients, further improving the quality and distinctiveness of the wines
produced [40].

2.2. Data Acquisition

The Galvanic Contact Resistivity (GCR) survey is performed using 1359 electric current
injections managed by the Syscal Pro resistivity system (IRIS Instruments, Orleans, France,
Figure 2b). For the Capacitively Coupled Resistivity (CCR) method, measurements are
conducted using the OhmMapper resistivimeter (Geometrics Inc., San Jose, CA, USA) at a
fixed frequency of 16.5 kHz [41], with an antenna offset of 5 m and variable nonconductive
cable configurations (Figure 2c). The acquisition parameters are summarized in Table 1.

Both the GCR and CCR methods measure subsurface electrical resistivity, fundamen-
tally relying on Ohm’s Law

V = IR (1)

where V is the voltage, I is the current, and R is the resistance. The apparent resistivity (ρa)
for both methods is calculated using

ρa= k
V
I

(2)

with k being a geometric factor dependent on electrode spacing and configuration.
The GCR method involves injecting a current through electrodes and recording the

voltage differences. Enhanced by the Syscal Pro instrument, this method performs electrical
resistivity tomography (ERT) through various electrode configurations.

The potential (Φ) in a homogeneous medium is given by

Φ =
ρI

2πr
(3)
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where ρ is the resistivity, I is the current, and r is the distance from the single current
electrode, facilitating detailed subsurface imaging [29,42].

Conversely, the CCR method measures subsurface resistivity without galvanic elec-
trodes, using a coaxial-cable array of transmitter and receiver sections dragged along
the ground. It utilizes capacitive coupling to inject an oscillating current through capac-
itive sensors instead of direct galvanic contact. The transfer impedance (Z) in CCR is
expressed as

Z =
1

iωCO
(1 − KESα) (4)

where i is the imaginary unit, ω is the angular frequency, CO is the mutual capacitance,
KES is the electrostatic geometric factor, and α is a complex number representing dielectric
properties. This approach reliably emulates DC resistivity measurements in complex
field environments.

The pseudo-depth of investigation Z for the OhmMapper is given by

Z = 0.285 · l · n0.87 (5)

where l is the dipole length and n is the number of dipole lengths between the transmitter
and the receiver. This empirical equation is derived from field tests with the OhmMapper
system [43].

The CCR method offers significant flexibility, allowing for the adjustment of dipole
and tow-link lengths to modify the depth of investigation and the volume of the subsurface
surveyed. Although particularly advantageous on highly resistive ground, CCR also proves
effective in soils with moderate resistivity, as it maintains sufficient capacitive coupling [26].
Furthermore, this method provides a high measurement-speed-to-data-density ratio, which
eliminates the need for electrode installation, significantly improving field efficiency [44].
This makes the CCR method especially useful for soil moisture mapping, environmental
monitoring, geotechnical investigations, and studies in areas such as permafrost, arid
regions, and urban environments, where extensive lines can be surveyed without the need
to remove electrodes [43]. However, the CCR method is limited by its shallow depth of
investigation and moderate spatial resolution. In addition, the movement of the antennas
during surveys introduces noise, leading to spikes in apparent resistivity that can affect the
accuracy of the results [44,45].

The GCR method investigates greater depths than the CCR method, using a dipole–
dipole configuration. GCR provides more stable and controlled measurements, as its
stationary galvanic electrodes maintain direct contact with the ground, reducing variability
during data acquisition. This stability contrasts with the CCR method, where moving
capacitive antennas introduce variability, such as fluctuations in coupling efficiency and
positional shifts, leading to higher resistance values during acquisition. Despite this
stability, GCR has limitations, particularly in terms of survey efficiency, as it requires
electrode installation and removal, which can be time-consuming, especially for large-scale
surveys. Additionally, factors like subsurface infrastructure interference and challenging
surface conditions, such as dry or highly resistive soils, can affect data quality [29,46].

Maintaining consistency in resistivity studies provides robust constraints for inver-
sion algorithms, which is essential for accurate model reconstruction [47]. Furthermore,
analyzing the same physical property across various datasets through joint inversion tech-
niques allows for the integration of multiple information sources, thereby improving model
reliability and spatial resolution for effective subsurface characterization [48].
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2.3. Data Processing

The inversion methodology employs an original modified and integrated framework
based on SimPEG [49], running on a PC with an Intel (R) Core (TM) i7-10700K CPU,
128 GB RAM, ROG Strix Z490-H motherboard. The software modular design facilitates
the exploration of DC resistivity data inversion, the integration of forward simulation,
data misfit evaluation, and model parameter regularization to enhance subsurface char-
acterization. The process extends to implement a joint inversion algorithm on a shared
model that quantifies similarities between different aspects of the same subsurface physical
property [50].

The framework (Figure 3) formulates the corresponding inverse problem as a least-squares
optimization problem and supports both individual (GCR and CCR) and joint inversions.

Table 2 summarizes the quantitative progression from raw measurements to processed
datasets for GCR, CCR, and joint inversions. It reflects the refinement steps of both input
data and output data, including outlier removal and data filtering, ensuring the integrity
and reliability of the data used in subsequent inversion modeling.

The natural logarithm of the acquired measurements (i.e., resistance measurements
in Ω), along with their associated uncertainties, undergoes rigorous preprocessing to en-
sure integrity and uniformity. The GCR and CCR datasets, formatted in an XYZ array
with columns for spatial coordinates (x, y, z) and resistance values, are integrated with
topographical information in an N × 3 matrix to adjust geospatial datasets for elevation
variations. Moreover, the literature (Neukirch & Klitzsch, 2010 [44]; Oldenborger & LeBlanc,
2013 [51]) highlights that inversion algorithms optimized for CCR data are not well estab-
lished, and that the system does not conform to a perfect dipole–dipole configuration. To
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address this, and based on recommendations from previous studies, we applied a con-
servative correction factor of 0.8 to the antenna length as an empirical adjustment. This
correction aims to account for the actual geometry of the Ohm-mapper system and enhance
the accuracy of the data. The GCR data are filtered by a quality factor (Q), excluding data
with a Q over 5% [51]. Measurements continue until the Q drops below 5% or five stacks
are reached; high standard deviations at maximum stacks lead to data exclusion. To further
ensure data integrity, the GCR data are filtered based on their quality factor (Q). During
the acquisition phase, measurements continue until Q drops below 5% or a maximum of
five stacks is reached. High standard deviation values associated with maximum stacks
indicate insufficient improvement in measurement quality, leading to the exclusion of data
with a Q greater than 5%.
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Table 2. Summary of data acquired and elaborated for the GCR, CCR, and joint inversions. “N◦

measurements acquired” refers to raw data points collected in the field, “N◦ input data” are processed
data points used for inversion, and “N◦ output data” represent the number of output discretized cells
generated during the inversion.

GCR CCR Joint

N◦ measurements acquired 5049 384 -
N◦ input data 4959 384 5343

N◦ output data (cells of the model) 26,824 30,155 30,751
N◦ output data after outlier removal 26,018 28,425 29,102

Following this preprocessing, the refined measurements, which resulted in a reduction
in the dataset by less than 2%, serve as the input data (row 2 Table 2) for subsequent analysis
and modeling.

Building upon the processed data, the discretized model space is defined through
mesh generation [52]. TreeMesh, chosen for its balance of computational efficiency and
spatial resolution through adaptive refinement, provides fine sampling in areas with
higher measurement density while maintaining a coarser discretization in regions with
sparser data and at greater depths. [53]. The specific TreeMesh employed has a minimum
horizontal cell width of 0.4 m (dxy) and a minimum vertical cell width of 0.25 m (dz),
with extents of 30 m horizontally and 8 m vertically, optimizing memory allocation and
processing resources.

Starting models use an air conductivity value of ln (10−8) S/m and a background
conductivity value. For the GCR method, it is also possible to model only the subsurface,
excluding the air layer, to improve computational efficiency. However, for the CCR method,
the air layer must still be modeled due to the nature of its antennas. For the CCR and
GCR methods, this background is the natural logarithm of the mean apparent conductivity
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from each method (ln (0.1) S/m for CCR and ln (0.045) S/m for GCR, respectively). For
the joint model, it is the natural logarithm of the weighted mean apparent conductivities
from both methods (ln (0.073) S/m). These models are mapped from the model space to
active cells, ensuring they align with the inversion framework and accurately reflect the
subsurface properties.

Structured as an optimization problem (Equation (6)), the inverse problem infers
subsurface properties from observational data. The objective function (ϕ(m)), consisting of
data misfit (ϕd(m)) and model regularization terms (βϕm(m)), is minimized using the L2
norm to refine the subsurface model.

ϕ(m) = ϕd(m) + βϕm(m) (6)

The forward model predicts the subsurface geophysical response, generating synthetic
data that refine the fit by adjusting cell values during inversion. Data misfit measures the
discrepancy between the observed and predicted data, while regularization stabilizes the
process by integrating prior geological knowledge. The trade-off parameter (β) balances
model accuracy with geological plausibility [26,54]. In this research, the optimization
employs the Inexact Gauss–Newton method, which approximates the Hessian matrix using
gradients and Jacobians, reduces computational costs, and enhances efficiency [55].

Accurate and stable modeling requires careful parameterization and optimization. The
Beta ratio balances data misfit with model complexity, while the Cooling factor and Cooling
rate control the reduction and frequency of β, ensuring stability and precision [56,57].
Parameters such as ε, max iterations LS, and max iterations CG contribute significantly to
the optimization. The ε parameter stabilizes the regularization function by mitigating
potential numerical instabilities. Setting limits on max iterations for LS and CG during
line search and conjugate gradient processes enhances computational efficiency. Effective
convergence is achieved through specific stopping criteria. Max iterations limit the total
iterations to prevent infinite loops and include an “early-stopping” criteria to prevent
overfitting, while tolerance parameters such as Tol CG, Tol F, and Tol X define the required
precision for the conjugate gradient solver, the minimal change in the objective function
value, and acceptable movement in the model parameters [58,59]. These parameters ensure
the inversion halts at an optimal point.

The optimization of geophysical inversion parameters is refined via a trial-and-error
process, integrating empirical analysis and theoretical principles. This process includes
performing a multidimensional scan at regular intervals to identify the best value for each
parameter, as shown in Table 3. The iterative nature of this method ensures that model
parameters are refined for maximum accuracy and stability.

Table 3. Ranges of parameters and optimal values used in the inversion processes. This includes the
minimum and maximum limits for each parameter, along with the best-fit values determined during
the inversion procedures.

GCR CCR Joint

Range Best Range Best Range Best

Beta ratio 10−4–103 102 10−4–103 10 10−4–103 200
Cooling factor 1–20 4 1–20 4 1–20 4.5
Cooling rate 1–6 3 1–6 4 1–6 3

Max iterations LS 10–40 30 10–40 30 10–40 30
Max iterations CG 10–40 35 10–40 35 10–40 35

ε 10−4–1 10−2 10−4–1 10−2 10−4–1 10−2

Max iterations 3–50 12 3–50 13 3–50 14
Tol CG 10−5–104 10−1 10−5–104 10−1 10−3–10 10−2

Tol F 10−5–104 0.04 10−5–104 0.01 10−1–10 0.003
Tol X 10−5–104 0.12 10−5–104 0.19 10−1–10 0.34
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The initial parameter settings are guided by theoretical expectations from geophysical
principles, insights from previous studies, and existing code implementations, as well as
the specific characteristics of the study area.

Theoretical expectations inform the initial parameter settings, grounded in geophysical
principles. Emphasis is placed on the trade-off parameter and data misfit, given their critical
influence on the objective function, to achieve a precise balance between inversion accuracy
and stability.

The trade-off parameter (β), ideally approaching zero, must be managed to avoid
causing the inversion to overflow or the model to overfit, which would result in unre-
alistic resistivity values. Similarly, the data misfit (ϕd(m)) should decrease to minimize
discrepancies between observed and predicted data, but excessive reduction can also lead
to instability, yielding extreme resistivity values [60].

The final step in the inversion workflow involves the assessment of the data misfit,
which is quantified using the normalized L2 norm difference between the observed and
predicted data:

Mis f it =

√√√√ N

∑
i=1

(
Dobs, i − Dpred, i

)2
(7)

where Dobs, i is the i-th observed data component and Dpred, i the i-th predicted data component.
The inversion algorithm is versatile, allowing for both independent and joint inver-

sions of the CCR and GCR datasets. This flexibility enables seamless switching between
datasets or their integration for joint inversion, tailored to the specific requirements of
the analysis. A key aspect of this process is the parameter α, which adjusts the weighting
between the GCR and CCR data misfits. In this study, α is aligned with the acquisition
proportions, assigning 93% to GCR and 7% to CCR. Implementing a unified algorithm
for CCR, GCR, and joint inversion provides an advantage, allowing for a comprehensive
assessment of each dataset’s influence on the inversion parameters. The joint data misfit
(ϕd−joint(m)) is defined as follows:

ϕd−joint(m) = (1 − α) ϕd−GCR(m) + α ϕd−CCR(m) (8)

Here, α is the weighted ratio of ϕd−GCR(m) to ϕd−CCR(m), with α adjusting the influ-
ence of each data misfit, with the individual GCR and CCR inversion results serving as
initial calibration points. This integrated approach ultimately produces a unified three-
dimensional resistivity model of the subsurface.

Upon finalizing the inversion process, we conduct a rigorous outlier analysis of the
resulting model cell values (as shown in row 3 of Table 2) using the boxplot method [61].
This post-inversion analysis yields resistivity values for the GCR, CCR, and joint inversion
models as detailed in row 4 of Table 2. Although the initial input datasets are smaller, the
number of 3D TreeMesh cells is significantly greater, with their magnitude being highly
dependent on the grid refinement around the electrodes.

3. Results

Using the best parameters from Table 3, the inversion process for GCR converges in 29 min
and 24 s over 12 iterations (corresponding to a computational speed of 147.0 s/iteration), CCR
converges in 27 min and 13 s over 13 iterations (125.6 s/iteration), and the joint inversion
converges in 1 h, 17 min, and 19 s over 14 iterations (331.4 s/iteration).

Figure 4 shows the trends observed during these inversion processes. While the
parameters do not always align with theoretical optima, they follow expected trends
without inducing instability, ensuring that the selected parameters are specifically tailored
to accurately represent the subsurface conditions of the vineyard of the experimental site,
rather than being universally applicable to other joint inversion scenarios.
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Figure 4. Trend comparison of the observed iterations during the inversion processes of GCR, CCR,
and the joint method. (a) χ2 progression calculated as the ratio of data misfit to the number of
observations; a better fit for GCR, a slower rate of decrease for CCR, and an effective balance for joint
inversion can be observed. (b) β parameter: these trends demonstrate that joint inversion effectively
reduces the regularization weight, aligning with the theoretical expectation of β approaching zero.
(c) Regularization parameter; a better fit for GCR, a slower rate of decrease for CCR, and an effective
balance for joint inversion can be observed. (d) Objective function combining the data misfit and
regularization terms, the joint inversion achieves the lowest objective function value, demonstrating
an improved model fit, and the ability of the joint inversion to balance model complexity with
data fidelity.

The χ2 parameter, given by

χ2 =
Mis f it

N
(9)

where Mis f it represents the data misfit function (Equation (7)) evaluated at the current
model, and N is the total number of observations and is the highest for CCR, reaching a
value of 21. This higher value is due to CCR’s increased sensitivity to near-surface variability.
Specifically, CCR probes depths where there are significant resistivity contrasts, which
complicates accurate model reconstruction. In comparison, the χ2 value for GCR is lower, at
11, reflecting its deeper investigation range and the smoother resistivity distribution in those
layers. The joint inversion results in an χ2 value of 15, effectively balancing the strengths
of both methods, leading to a more uniform reduction in the overall data misfit. More
importantly, all methods demonstrate a consistent decrease in χ2 values, showcasing the
efficiency of the inversion processes in minimizing data misfit through iterative refinement.

The β parameter exhibits a decreasing trend across all methods, corresponding with
the expected reduction in regularization weight as the inversion process converges. For
GCR, the final β value is 2, demonstrating a steady reduction throughout the iterations.
This decrease is accompanied by an increase in the regularization parameter, culminating
in a final value of 29.6, indicating robust model smoothness as the inversion progresses.
The objective function, which combines the misfit of the data and the regularization terms,
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reaches 55,019 for GCR, reflecting a balance between achieving a smooth model and fitting
the deeper subsurface features.

Similarly, for CCR, the final β is 16.3, reflecting a less rapid yet consistent decline in β.
Despite the variability in superficial layers, the regularization parameter increases to a final
value of 10.1, signifying a controlled enhancement in model smoothness tailored to the
data’s sensitivity characteristics. The objective function for CCR reaches 8616, indicating an
effective, though more moderate, balance between model smoothness and data fit.

In the joint inversion, the β parameter decreases more significantly to a final value of
4.1, consistent with the α value, which assigns greater weight to GCR data. This substantial
decline is paralleled by an increase in the regularization parameter, reaching a final value
of 18.9. The objective function for the joint inversion achieves a final lowest value of
6186, demonstrating an improved model fit by effectively integrating both datasets and
minimizing the combined data misfit. This behavior underscores the ability of the joint
inversion to balance model complexity with data fidelity, resulting in a more consistent and
reliable solution across the dataset.

The distribution of resistivity values for GCR, CCR, and joint inversion methods shows
distinct characteristics, with positive skewness more evident in the joint inversion and CCR
distributions (Figure 5). Joint inversion yields a smoother and more consistent distribution
compared to the individual methods, effectively integrating data and reducing overall
variability. The median resistivity from the joint inversion lies between the medians of GCR
and CCR, while the minimum and maximum values highlight the differences in sensitivity
and spatial resolution among the methods (Table 4).
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Table 4. Statistical summary of the resistivity values for GCR, CCR, and joint inversion. The joint
inversion method produces a smoother and more consistent resistivity distribution compared to
the other methods. Joint inversion effectively integrates data, reducing overall variability, with the
median resistivity lying between those of GCR and CCR.

GCR CCR Joint

Max value (Ω·m) 87.5 269 64.7
Min value (Ω·m) 0.1 0.2 0.1

Mean value (Ω·m) 14.4 103.7 36.7
Median value (Ω·m) 13.7 88.2 30.6

Skewness 0.4 1.4 0.9

The narrower distribution in the GCR data highlights a greater homogeneity in re-
sistivity values, reflecting its focus on deeper regions where resistivity is generally lower,
and the likelihood of subsurface water is higher. In contrast, the CCR method spans a
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much wider range of values, indicating significant variability and heightened sensitivity to
near-surface resistivity heterogeneities. The joint inversion method provides a balanced
perspective, integrating the sensitivities of both GCR and CCR to deliver a comprehensive
view of subsurface resistivity.

To facilitate a detailed analysis, the chromatic variations in the color scale (Figure 5)
were assigned to specific values with the aim of enabling a more granular interpretation of
resistivity values across the study area. This division allows for a clearer identification of
resistivity transitions within the electrical tomography, highlighting structures that correlate
with lithological, geological, and agronomic evidence.

The GCR sections, reaching depths of up to 5 m, provide a more extensive view of
the subsurface compared to the 3 m depth achieved by the CCR sections (Figure 6). This
difference stems from the varying acquisition techniques and configurations adopted in
each method. The subsoil characterization shows that CCR inversion effectively delineates
superficial layers, but loses spatial resolution with increasing depth, while GCR inversion,
despite probing deeper layers, also experiences reduced spatial resolution at these depths.
All sections show a reduction in accuracy towards the edges due to the lower signal
coverage in those regions.
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Figure 6. Resistivity sections from GCR and CCR inversions. Panels (a,c,e,g,i,k) display six resistivity
sections (identified by the letter “G”) derived from GCR inversion, corresponding to acquisition
spreads oriented perpendicular to those used in the CCR inversion. Panels (b,d,f,h,j,l) show the
resistivity (identified by the letter “C”) sections from CCR inversion, each aligned with its respective
acquisition spreads. For the spatial location of the sections, refer to Figure 1.
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The joint inversion of GCR and CCR data combines the strengths of both methods,
resulting in a more comprehensive three-dimensional subsoil model (Figure 7). This
approach integrates the high-spatial-resolution shallow information from CCR with the
deeper probing capability of GCR, producing resistivity values that capture the key features
of both datasets.
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Figure 7. Resistivity sections obtained from the joint inversion. Panels (a,c,e,g,i,k) display sections
along the GCR lines (identified by the letter “G”). Panels (b,d,f,h,j,l) show sections along the CCR
lines (identified by the letter “C”). For the spatial location of the sections, refer to Figure 1.

4. Discussion

The application of each inversion algorithm generates a subsurface resistivity model,
with forward modeling used to simulate signal propagation and acquisition, producing
synthetic data for each model. The quality of the GCR, CCR, and joint models is then
assessed by calculating their misfit using a modified version of Equation (7), where Dpred, i
represents the synthetic data component, and the misfit is normalized by the total number
of observations.

The CCR and GCR methods provide different spatial coverage and spatial resolution.
Consequently, the signal propagation simulated by forward modeling affects various parts
of the synthetic model. This difference enables us to evaluate the fit of different, potentially
overlapping regions of the model with respect to the two techniques and their acquisition
configurations. As reported in Table 5, the best outcomes, indicated by the smallest misfits,
occur when comparing synthetic data from single-objective models with the observed data
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used for inversion (e.g., synthetic data from the GCR model against GCR observed data).
Conversely, single-objective models show the largest misfits when compared with data
for which they are not optimized (e.g., synthetic data from the GCR model against CCR
observed data).

Table 5. Misfit values measured using the normalized L2 norm difference compared to the ob-
served data, against the synthetic data computed on single-objective (GCR and CCR) and joint
inversion models.

Model
D

at
a

GCR CCR Joint

GCR 1.04 × 10−2 27.5 × 10−2 2.80 × 10−2

CCR 2.10 × 10−2 1.91 × 10−2 1.95 × 10−2

The joint inversion produces strong overall results, successfully creating a model that
fits both the CCR and GCR data. This indicates that the overall accuracy of the predicted
model is significantly improved, as it integrates more constraints than models obtained
from single-objective inversions.

When integrated through joint inversion, electrical resistivity methods provide a com-
prehensive three-dimensional model of soil conductivity, offering a detailed underground
view of the vineyard. Even though closely spaced electrodes may introduce artifacts,
such as spurious anomalies or distortions in the resistivity data due to strong coupling
effects [25,62], it is still possible to identify subsurface structures whose characteristics
align with agronomic features. With a high resistivity value density (20.21 data per m3) the
subsurface panorama reveals distinguishable structures related to lithological variations,
the presence of subsurface water, and the distribution of root systems. These features not
only highlight the spatial variability within the vineyard, but also provide insights into the
roots’ vital activity, contributing to a deeper understanding of the interactions between soil
properties and vine health.

The joint inversion model effectively delineates root systems within the vineyard.
Mary et al. [63] and Ehosioke et al. [64] demonstrate that resistivity variations effectively
identify root presence and features, as roots alter soil moisture and electrolyte content
through water and nutrient uptake, leading to distinct resistivity contrasts. The resistivity
contrasts observed in our study reveal root depth up to 1 m (Figure 7), confirming the
studies of Serra et al. [38]. Thicker roots, characterized by higher resistivity due to their
dense structure, contrast with thinner roots, which exhibit lower resistivity values. This
differentiation provides a detailed understanding of the spatial distribution and structural
composition of the roots, thereby offering valuable insights into the overall morphology
and function of the root system.

The 3D model (Figure 8) identifies zones of low resistivity (<20 Ω·m), which indicate
the presence of subsurface water. These low-resistivity zones shift from the northeast
to the south, expanding and reaching superficial areas. In the region where G ≥ 4, the
low-resistivity volume is 75.77 m3 up to a depth of 5 m, increasing to 141.34 m3 in regions
where G ≤ 3. Courjault-Radé et al. [65] support this observation, noting that similar
resistivity values correspond to saturated conditions. These findings align with established
correlations between resistivity values and subsurface materials, suggesting conductive
materials like clays or water-saturated sediments in low-resistivity areas, and coarser, less
conductive materials like sands and gravels in high-resistivity ones.
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Figure 8. Three-dimensional resistivity model derived from the joint inversion. The 3D visualization
highlights subsurface volume with resistivity values <20 Ω·m, providing a comprehensive view of
the spatial resistivity distribution across the surveyed area. Location of GCR, CCR, and plant rows
are identified, respectively, by the letters G, C, and R.

Further analysis of the 3D model reveals the impact of soil management practices
(e.g., terrain plowing) on resistivity variations. Sections examined perpendicular to the
vineyard rows and intra-rows, up to a depth of −1 m, reveal a systematic alternation
between areas of high and low resistivity (Figure 9). Jeřábek et al. [66] explain that plowed
soil typically exhibits lower resistivity due to higher soil bulk density and reduced porosity
in the compacted plow pan, which prevents water infiltration into deeper soil layers and
reduces water supply to lower layers. In contrast, unplowed soil is more resistive. This
understanding supports the identified patterns, indicating that plowed intra-rows exhibit
lower resistivity, while unplowed intra-rows show higher resistivity. The spatial location
of these intra-rows align with the observed resistivity variations, further substantiating
the geoelectrical findings and providing a clear correlation between resistivity values and
soil treatment.

The model’s ability to reveal critical zones for water dynamics within the vineyard
supports agronomic decision-making. Variations in water availability across vine rows are
identified, with specific plants having greater access to water (lower resistivity values) and
others having limited access (higher resistivity zones). This differentiation has implications
for vine health and productivity. Songy et al. [67] highlight that high soil water reserves
predispose vines to grapevine trunk diseases, emphasizing the importance of managing soil
moisture to mitigate disease risk. Excess water accumulation creates favorable conditions
for pathogenic fungi, influencing the spread and severity of these diseases. Thus, the
3D resistivity model not only enhances our understanding of water dynamics within the
vineyard, but also provides valuable insights into the spatial distribution of soil moisture
and its implications for disease treatment. This information is pivotal for developing
effective strategies to manage soil water content and improve overall vineyard health.
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Figure 9. Average resistivity values of the joint inversion model (black line) within the first meter
of depth at the virtual profile located between the G3 and G4 line. The gray band corresponds to
the 1 standard deviation uncertainty range, the brown and green band highlight, respectively, the
alternation between plowed and unplowed inter-row areas. The locations of the vine plants rows are
indicated by the letter R.

Equally significant, the three-dimensional resistivity model supports oenological
analysis by facilitating precise vineyard management through soil microzonation.

Bonfante et al. [68] emphasize that soil microzonation optimizes hydrological and
pedological characteristics, directly influencing grape quality through precise water and
nutrient supply. This approach allows for better adaptation to soil variability, thus sup-
porting improved vine health and productivity. Similarly, Wang et al. [69] demonstrate
the significant impact of soil type on vine growth and wine quality, highlighting the need
for detailed soil characterization to optimize viticultural practices. Employing this model
achieves a comprehensive understanding of subsoil conditions, leading to rationale re-
source management and enhanced wine quality. Targeted interventions ensure that specific
vineyard areas receive appropriate care, ultimately benefiting the wine industry through
improved production practices.

5. Conclusions

The joint inversion of Capacitively Coupled Resistivity (CCR) and Galvanic Contact
Resistivity (GCR) data presented in this study produced a highly detailed 3D resistiv-
ity model of the investigated vineyard, providing a high spatial resolution subsurface
“snapshot” with 20.21 data/m3. This model significantly enhances subsurface soil charac-
terization, effectively delineating root systems, identifying the pattern of water distribution,
and capturing the effects of soil management practices, with recurring patterns showing
relative variations in resistivity values sometimes greater than 50%. Quantitative analy-
sis demonstrates that the developed joint inversion model not only reduces data misfit
more effectively than individual inversions, but also successfully integrates measurements
of the same physical quantity using different approaches. The result is a smoother and
more balanced range of resistivity values that seamlessly integrate shallow and deeper
subsurface data.
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In addition, the 3D model identified a low-resistivity zone (<20 Ω·m) indicative of the
presence of subsurface water, extending from the northeast to the south and expanding
to superficial areas. The systematic alternation of high- and low-resistivity anomalies in
cross-sections perpendicular to and between vineyard rows, down to a depth of −1 m,
further illustrates how the variation in resistivity values reflects the impact of soil manage-
ment practices, demonstrating the necessity to adopt targeted interventions for improving
vineyard health.

While the joint inversion method significantly improves the subsurface character-
ization, it does not fully capture all the environmental conditions of the vineyard. To
achieve a more accurate assessment, the presented method should be complemented by
surface-based investigations by means of agrometeorological stations or proximal and
remote sensing surveys. The use of these additional sensors contributes to providing a
comprehensive picture of the vineyard, capturing the variations in surface variables and
parameters to be coupled with the 3D resistivity distribution provided by the joint inversion
of the geoelectric methods. The integration of these data sources could unlock new opportu-
nities for precision viticulture. In addition, the developed algorithm has strong commercial
potential as specialized software to support scalable, data-driven decision-making.

Future research could extend the joint inversion of geoelectrical data developed in
this study. Building on established methodologies [70], the implementation of permanent
monitoring networks for electrical resistivity in vineyards would enable continuous time-
lapse analysis, transitioning from 3D to 4D models. This approach could provide valuable
insights into changes in subsurface features over time, such as soil moisture dynamics and
root system development.

In addition, the integration of machine learning techniques could address the chal-
lenges associated with non-linear and ill-conditioned resistivity inversions. By training
convolutional neural networks to map pseudo-resistivity data to resistivity space, this
approach could provide a data-driven alternative to traditional methods, enhancing the
accuracy and efficiency of geophysical inversions and improving the quality of subsurface
models [70,71].
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