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a b s t r a c t 

The global warming effects put in danger global water availability and make necessary to decrease water wastage, 

e.g., by monitoring global irrigation. Despite this, global irrigation information is scarce due to the absence of a 

solid estimation technique. In this study, we applied an innovative approach to retrieve irrigation water from high 

spatial and temporal resolution Soil Moisture (SM) data obtained from an advanced sensor based on Proximal 

Gamma-Ray (PGR) spectroscopy, in a field located in Emilia Romagna (Italy). 

The results show that SM is a key variable to obtain information about the amount of water applied to plants, 

with Pearson correlation between observed and estimated daily irrigation data ranges from 0.88 to 0.91 by using 

different calibration methodology. With the aim of reproducing the working conditions of satellites measuring 

soil moisture, we sub-sampled SM hourly time series at larger time steps. The results demonstrated that the 

methodology is still capable to perform the daily (weekly) irrigation estimation with Pearson Correlation around 

0.6 (0.7) if the time step is not greater than 36 (48) hours. 

1

 

a  

(  

c  

(  

d  

w  

r  

2  

a  

c  

u  

i  

2  

o  

t  

l  

a
 

l  

a  

n  

l  

t  

l  

q  

S  

f  

e  

t  

W  

a  

a  

 

h

R

A

0

. Introduction 

Irrigation is one of the greatest human intervention on water cycle
nd it accounts for more than 70% of global freshwater withdrawals
 FAO, 2006 ; Foley et al., 2011 ). Nowadays, around 20% of the world’s
ultivated area is irrigated and it supplies over 40% of the world’s food
 Droogers et al., 2010 ). Global warming and the intensification of the hy-
rological cycle, with the increased occurrence of droughts and floods,
ill threaten the natural availability of water, enhancing the need of ir-

igation ( Allan and Soden, 2008 ; Kummu et al., 2016 ; Rockström et al.,
012 ; Vörösmarty et al., 2000 ). The projected population growth will
ggravate this already complicated panorama, due to the consequent in-
rease of food demand. The knowledge of irrigated lands and the water
sed is hence of primary importance to prevent water wastage, to avoid
llegal withdrawals and to ensure food and water security ( Siebert et al.,
010 ; Taylor et al., 2013 ). Monitoring irrigation is also fundamental for
ther applications: (i) to understand the consequences of irrigation wa-
er cycle modifications, (ii) to investigate the impact of irrigation on
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ocal and regional climate conditions, and (iii) to develop hydrological
nd climate models that account for irrigation ( Sacks et al., 2009 ). 

Despite its importance, a global dataset of irrigation water use over
ong periods is still missing. Available time series of irrigation amount
re mostly based on statistical surveys. This kind of information does
ot take into account the illegal pumping and is potentially affected by
arge errors, because of self ‐reporting bias, spatial inconsistency and low
emporal resolution and coverage (e.g. the U.S. Geological Survey pub-
ishes a report on water use every 5 years) ( Deines et al., 2017 ). Their
uality is hence variable over different states and regions as inferred by
iebert et al. (2005) who developed a global dataset of area equipped
or irrigation by combining sub-national irrigation statistics. A differ-
nt approach consists in modeling water requirements for crop irriga-
ion rather than actual water used for irrigation ( Doll and Siebert, 2002 ;

ada et al., 2014 ), but the existence of vast under and over irrigated
reas with respect to water requirements ( Foley et al., 2011 ) represents
 large source of errors for this methodology that limits its applicability.

In this context, a new source of irrigation information is emerging,
.e. the use of soil moisture, SM, observations. For decades, SM has been
idely used by farmers to efficiently schedule irrigation ( Campbell and
ecember 2019 
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ampbell, 1982 ; Khan et al., 1996 ; Aguilar et al., 2015 ). Its knowledge
elps to determine the crop stress conditions and then assists the farmer
o decide when and how much water must be applied for improving the
fficiency and the quality of the production. 

Recently, SM has been also employed to directly quantify the amount
f water used for irrigation ( Brocca et al., 2018 ; Li et al., 2019 ;
aussinger et al., 2019 ). For instance, Li et al. (2019) used in situ SM
ata to estimate soil water budget components, including irrigation. The
esults show that SM potentially can identify irrigation amounts and fre-
uencies. Zaussinger et al. (2019) and Brocca et al. (2018) used remote
ensing derived SM data. Zaussinger et al. (2019) developed a methodol-
gy to estimate irrigation water use by comparing satellite and modelled
M (which does not include irrigation information), over the Contiguous
nited States. They validated the estimated irrigation amount against

he 2013 Farm and Ranch Irrigation Survey ( USDA, 2014 ). Despite the
ood results obtained, the validation of the estimated irrigation in dif-
erent terrains and different climate conditions appears difficult due to
he different period of time of the benchmark dataset (they considered
he 2013 growing season against the satellite data from 2013 to 2017)
nd its state-level aggregation. 

A different approach to estimate irrigation amount from SM has
een developed by Brocca et al. (2018) . Through a modified version
f SM2RAIN algorithm ( Brocca et al., 2014 ), they demonstrated that
wo consecutive satellite soil moisture measurements (in addition to an-
illary rainfall data) can be used to obtain irrigation estimates at daily
ime scale. The algorithm is based on an inversion of soil water bal-
nce equation to derive the total amount of water entering into the soil.
n practice, from SM measurements the irrigation estimation is possi-
le by subtracting the measured rainfall fraction from the total water
stimated by the algorithm (which inherently includes irrigation). In
rocca et al. (2018) a preliminary synthetic study, to demonstrate the
easibility of the approach, and a subsequent investigation in nine pi-
ot sites over the world has been performed. Due to the lack of in situ
rrigation data, only qualitative assessment was carried out showing rel-
tively good agreement of irrigation estimates by different satellite SM
roducts over regions characterized by long dry periods and in which
atellite soil moisture products perform reasonably well. The method
as also been tested by using satellite SM data in two sites, respectively
n Nebraska and Iran ( Brocca et al., 2017 ; Jalilvand et al., 2019 ), where
rrigation data were available. 

The work of Brocca et al. (2018) and Zaussinger et al. (2019) high-
ighted some important limitations mainly related to low spatial and
emporal resolution of current available satellite soil moisture observa-
ions. Indeed, most of them have a spatial resolution larger than 20 km,
hile an irrigated field can range from few thousands of meters to few

quared kilometers. As a result, the irrigation signal is usually masked
ut from the presence of other features contained in the coarse scale
atellite pixel. Moreover, a low irrigation signal has a high risk of be-
ng indistinguishable from the inherent noise in the satellite derived SM
ignal ( Su et al., 2015 ; Massari et al., 2017b) . The use of higher spatial
esolution SM observations as those derived from Synthetic Aperture
adar instruments like Sentinel-1 ( Bauer-Marschallinger et al., 2018 )
ould solve this problem for fields with an area similar to the one of the
atellite’s pixel (in this case 1 km), but their limited temporal resolution
one observation every 1.5–4 days over Europe when the two Sentinel-
 satellites are considered) could be inappropriate to detect irrigation
pplications occurring in few hours. 

In summary, three main issues have limited an objective understand-
ng of whether satellite SM measurements can provide useful informa-
ion on irrigation estimation, namely, the coarse spatial support of satel-
ite SM observations, their relatively low temporal resolution (with re-
pect to the scales of the irrigation practices) and the absence of a reli-
ble benchmark for testing the validity of the approaches developed so
ar to estimate irrigation volumes from space. 

The purpose of this study is to demonstrate that SM is a valuable
ource of information for assessing irrigation fluxes and to clarify the
ffects of spatial and temporal resolution on such estimates. Specifically,
his manuscript aims to answer the following two questions: 

1) is SM a reliable source for retrieving irrigation fluxes? 
2) can the proposed approach be used with high spatial and low tempo-

ral resolution remote sensing data? Can its accuracy be considered
sufficient for estimating irrigation? 

To reach the objectives, we applied the method of
rocca et al. (2018) in a controlled irrigated experimental field
y using an innovative SM dataset inferred from proximal gamma-ray
pectroscopy measurements, characterized by high accuracy, competi-
ive footprint and higher temporal resolution with respect to satellite
M data ( De Groot et al., 2009 ; Bogena et al., 2015 ; Strati et al., 2018 ;
aldoncini et al., 2018 , 2019 ). A Proximal Gamma-Ray (PGR) and an
gro-meteorological station have been installed in an experimental
eld located in North Italy for a seven-month period. The 40 K gamma
ignal detected by the PGR spectrometer installed at a few meters
bove the ground is inversely correlated with soil water content and
t is not affected by variations in cosmic radiation and soil chemical
omposition ( Strati et al., 2018 ). The station is able to sense SM at
eld scale ( Baldoncini et al., 2018 ), from ~ 10 3 to ~ 10 4 m 

2 , and it
s therefore in between point and satellite measurements (~ 10 8 m 

2 ),
ptimal for agricultural application. It is also characterized by high
emporal resolution (1 h) hence it is able to track SM variations induced
y irrigation. 

The paper is organized as follows: Section 2 presents the description
f the experimental site and setup; Section 3 synthesizes how SM can
e inferred from PGR spectroscopy measurements and the basic princi-
les of the proposed algorithm for irrigation estimation; the results, the
iscussion and the test at lower temporal resolution are illustrated in
ection 4 . Lastly, conclusions are drawn in Section 5 . 

. Experimental site and setup 

The experimental site is a 40 × 108 m 

2 tomato test field (44.57°
, 11.53° E; 16 m above sea level) belonging to a research center of

he Emiliano-Romagnolo Canal (CER) irrigation district in the Emilia
omagna region, Italy ( Fig. 1 a). According to the Köppen-Geiger cli-
ate classification ( Peel et al., 2007 ), this geographical area is classified

s Cfa (temperate climate, without dry season and with hot summer).
milia Romagna is the Italian region having the largest land surface cul-
ivated with tomatoes, one of the most water-demanding crops among
egetables, and it contributes for about one third of the tomato national
roduction ( ISTAT, 2017 ). 

The experimental setup is composed of a Proximal Gamma-Ray, PGR,
tation equipped with a 1 L NaI(Tl) detector placed at 2.25 m above the
round and a commercial agro-meteorological station (MeteoSense 2.0,
etsens; see Fig. 1 a) ( Strati et al., 2018 ). During the data taking period

from 4 April to 2 November 2017), the minimum temperature, T min ,
anged from 1.3 °C to 22.7 °C and the maximum temperature, T max ,
anged from 13.5 to 39.3 ( Fig. 1 b); the Short Wave Incoming Radiation
 SWIR ) varied from 34.7 to 257.3 W/m 

2 ( Fig. 1 c). The evapotranspira-
ion ( ET0 , Fig. 1 c) is calculated on the basis of the Hargreaves method
 Hargreaves and Samani, 1985 ) by using weather data recorded by the
gro-meteorological station. 

Tomato plants were transplanted on 23 May with a plant density of
.5 plants/m 

2 and harvested on 14 September. The crop phenological
rowth stages of anthesis (the time of flowering) and maturity, together
ith the dates of planting and harvesting, are indicated in Fig. 1 b. Irriga-

ion water was delivered by a sprinkler system, according to a schedule
rovided by the IRRINET decision support tool ( Munaretto and Batti-
ani, 2014 ). The irrigation measurements refer to the water pumped to
he sprinkler system. In order to account the losses due to leakage, wind
rift, spray droplet evaporation and evaporation from leaf surfaces, a
caling factor of 0.9 is applied to each measurement, as indicated from
he field managers. 
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Fig. 1. Panel (a), Proximal Gamma-Ray (PGR) and agro-meteorological (AM) stations, and location of the study area. Panels (b) and (c), weather parameters recorded 

by the AM station during the data period, i.e. 4th of April–2nd of November 2017: maximum ( T max ) and minimum ( T min ) temperature (panel b), Short Wave Incoming 

Radiation (SWIR) and reference evapotranspiration (ET0) (panel c); ET0 is calculated by using the Hargreaves equation ( Hargreaves and Samani, 1985 ). The arrows 

in panel (b) indicate the four major crop maturity phases, i.e., planting (P, 23 May), anthesis (A, 9 June), maturity (M, 30 August), and harvesting (H, 14 September). 
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The soil has a loamy texture characterized by 45% of sand, 40%
f silt and 15% of clay; soil bunk density is 1345 kg/m 

3 and the or-
anic matter content is 1.26%. The hydraulic properties in terms of
ilting point (0.09 m 

3 /m 

3 ), field capacity (0.32 m 

3 /m 

3 ), and saturation
0.48 m 

3 /m 

3 ) were inferred from the water retention curve reported in
trati et al. (2018) . 

. Methods 

.1. Field scale soil moisture monitoring with gamma-ray spectroscopy 

Nuclear non-invasive and non-contact techniques have been devel-
ped for filling the gap between punctual (~m 

2 ) and satellite coarse
esolution scale (~ 10 5 m 

2 ) SM data. The Cosmic-Ray Neutron and
roximal Gamma-Ray (PGR) methods demonstrated to effectively probe
M with a field scale footprint (~10 4 m 

2 ) up to a depth of ~ 30 cm,
imiting costs and manpower, and using real-time and wireless sensors
 Andreasen et al., 2017 ; Baldoncini et al., 2018 ; Strati et al., 2018 ;
reda et al., 2008 ). In particular, the PGR method consists in the quan-
ification of SM by measuring gamma signals emitted in the decay of
0 K naturally present and typically homogeneously distributed in the
gricultural soil. 

A gamma-ray spectroscopy measurement is extremely sensitive to
ifferent soil water contents as water is much more effective in atten-
ating gamma rays with respect to minerals typically present in the
oil. Indeed, the measured 40 K gamma signal S ( t ) [counts per second]
t time t is inversely proportional to the volumetric soil water content
M [m 

3 /m 

3 ] ( Baldoncini et al., 2019 ; Strati et al., 2018 ): 

M ( 𝑡 ) = 

( 

𝐴 ( 𝑡 ) 
𝑆 ( 𝑡 ) 

− 0 . 903 
) 

𝜌 (1) 
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Fig. 2. Panel (a) 40 K gamma signal in cps (green points., panel b) volumetric soil water content SM (red points) estimated on the basis of gamma spectroscopy 

measurements and corrected for the attenuation due to the biomass water content, and daily amount of rainfall (blue lines) and irrigation water (yellow line) are 

reported for the data taking period (4 April–2 November). 40 K gamma signals and SM values are hourly averaged. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 
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 ( 𝑡 ) = 𝑆 

𝐶𝑎𝑙 × Λ( 𝑡 ) ×
[
𝑤 

𝐶𝑎𝑙 + 0 . 903 
]

(2)

here Λ( t ) is the adimensional time dependent biomass water content
orrection factor ( Baldoncini et al., 2019 ) and 𝜌 is the soil bulk dry den-
ity (kg/m 

3 ). S Cal is the 40 K gamma signal recorded at calibration time
hen the gravimetric soil water content w 

Cal [kg/kg] was determined
n soil samples. 

Indeed, the horizontal and vertical horizons of PGR spectroscopy can
e defined according to the probability law governing the survival of
hotons when traversing a material, as in Feng et al. (2009). Given a
xed detector at ~2 m height and a typical 1.3 × 10 3 kg/m 

3 soil density,
t can be estimated that 95% of the unscattered gamma photon flux
eaching the spectrometer comes from an area with a radius of ~ 25 m
 Fig. 2 ) and from a depth of ~ 30 cm (Fig. 1 of Baldoncini et al., 2018 ).

.2. Quantifying irrigation by the inversion of the water balance equation 

The idea to invert the soil water balance equation was initially
eveloped to retrieve rainfall from in situ and satellite SM data
 Brocca et al., 2015 , 2016 , 2017; Ciabatta et al., 2017 ; Koster et al.,
016 ; Massari et al., 2017a) . Here a similar approach is applied, follow-
ng the work done by Brocca et al. (2018) . Specifically, the soil water
alance equation for a layer depth Z can be described by the following
quation: 

 ⋅ 𝑛 ⋅
dSM ( 𝑡 ) 

d 𝑡 
= 𝑟 ( 𝑡 ) + 𝑖 ( 𝑡 ) − 𝑔 ( 𝑡 ) − 𝑠𝑟 ( 𝑡 ) − 𝑒 ( 𝑡 ) (3)

here Z [mm] is the soil layer depth, n [m 

3 /m 

3 ] is the soil porosity,
M( t ) [–] is the relative saturation of soil, t [days] is the time, r ( t )
mm/days] is the rainfall rate, i ( t ) [mm/days] is the irrigation rate, g ( t )
mm/days] is the drainage (deep percolation plus subsurface runoff)
ate, sr ( t ) [mm/days] is the surface runoff and e ( t ) [mm/days] is the
ctual evapotranspiration. Drainage can be expressed by: 

 ( 𝑡 ) = 𝑎 ⋅ SM ( 𝑡 ) 𝑏 (4)

here a [mm/days] and b [–] are two parameters expressing the non-
inearity between drainage rate and SM ( Brocca et al., 2014 ). sr ( t ) can
e considered negligible, since the irrigation through sprinkler system
hould avoid the formation of surface runoff, if carried out optimally.
here is still the possibility that very intense or frequent water appli-
ation (rainfall or irrigation) could saturate the soil and could lead to
urface runoff. The resulting underestimation is a residual error to be
ccepted, since SM cannot keep trace of the runoff. Finally, actual evap-
transpiration is assumed linearly related to reference evapotranspira-
ion: 

 ( 𝑡 ) = ET 0 ⋅ SM ( 𝑡 ) (5)

Therefore, Eq. (3) can be simplified into: 

 ( 𝑡 ) + 𝑖 ( 𝑡 ) = 𝑍 

∗ ⋅
dSM ( 𝑡 ) 

d 𝑡 
+ 𝑎 ⋅ SM ( 𝑡 ) 𝑏 + ET 0 ⋅ SM ( 𝑡 ) (6)

here Z ∗ is Z × n . 
One of the main issues associated with this approach is that the di-

ect inversion of Eq. (6) inherently leads to false irrigation estimates
f the soil moisture signal is highly noisy. To prevent this problem, a
emi-empirical exponential filter ( Wagner et al., 1999 ) was applied to
M data, which depends on a single parameter representing the charac-
eristic time scale of SM variation, T . Once denoised, the SM signal can
e used in Eq. (6) to estimate the sum of irrigation and rainfall rate. 

The calibration of the three parameters ( Z ∗ , a and b ) was carried out
y minimizing the Root Mean Square Error (RMSE) between observed
nd estimated rainfall plus irrigation data. In this perspective, the lim-
ted availability of irrigation observation could pose severe limits on the
pplication of the method. Two different calibration procedures were
herefore used to test the actual need of irrigation observed data: the
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Fig. 3. Denoised PGR SM time series. The hourly raw data (red circle) are first interpolated with a maximum no data gap of 5 h and then filtered with the exponential 

filter (green line). The resulting data are then sampled each 24 h (blue line). (For interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 
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rst calibration (Rain + Irr from here onward) is performed for the en-
ire period using both rainfall and irrigation data, whereas the second
ne (Rain) is performed by using only rainfall data. For the latter, as-
uming that no irrigation is applied when rainfall occurs, the calibration
s performed only on days where r ( t ) ≠ 0. This is a fundamental hypoth-
sis, because during days in which both rainfall and irrigation occur, the
lgorithm will force the total water infiltrated into the soil at the value
f the rainfall only, leading to an underestimation error. The rationale
s that if the two calibration procedures provide similar results in terms
f irrigation estimation, the method can be confidently applied with no
estrictions beside the hypothesis above. 

Once the parameters’ calibration is performed, the irrigation rate can
e calculated by simply subtracting the observed rainfall rate from the
utcomes of Eq. (6) . 

. Results and discussion 

This section describes the estimation of SM from PGR spectra and the
stimation of the irrigation through the application of above presented
lgorithm. Estimated rainfall and irrigation are then compared against
rue rainfall and irrigation fluxes by using two performances indices:
he Pearson Correlation coefficient, R , and the Root Mean Square Error,
MSE. Finally, the role of SM data temporal resolution is investigated. 

.1. Soil moisture estimation through proximal gamma-ray spectroscopy 

Soil moisture was determined with hourly temporal resolution on the
asis of PGR measurements for almost the entire 7 months data-taking
eriod ( Fig. 2 ). The PGR measurement is sensitive to more than half
xperimental field and therefore well represents the mean soil moisture
f the field. The gamma and agro-meteorological stations installed at the
omato experimental field were operative for a 94.8% overlapping duty
ycle and a 260 GB global amount of uncompressed data was recorded.
s both stations were equipped with a GPRS connection, it was possible

o remotely process the data in real time. 
PGR 

40 K signal ( Fig. 2 a) and SM ( Fig. 2 b) continuous time series
how a strong correlation with rainfall and/or irrigation events, also
n cases of low amounts of distributed water. PGR measurements are
ndeed able to provide high frequency SM estimations sensitive to tran-
ient soil water content levels, consistently with physical-hydrological
oil properties. The reliability of the method was tested against valida-
ion gravimetric measurements on soil samples, resulting in a ~2% av-
rage discrepancy, and against 3 different soil-crop hydrological models
 Strati et al., 2018 ). 

Provided a calibration of SM through direct measurements on soil
amples and a correction accounting for the biomass shielding effect,
GR spectroscopy performed with a permanent station can be consid-
red an effective non-stop and non-invasive SM monitoring method. 

.2. From soil moisture to irrigation 

PGR SM data were processed through the irrigation estimation algo-
ithm to verify the feasibility to estimate rainfall and irrigation amounts
rom SM. An hourly linear interpolation was applied to estimate SM val-
es during the shutdown periods of the PGR station. If no value was
ound within a maximum interpolation gap of 5 h, the corresponding
M was excluded from the analysis. The semi-empirical exponential fil-
er was applied to the resulting SM data with 1 h temporal resolution:
 parameter was fixed at 0.16 days (around 4 h) after the calibration of
he algorithm. The denoised SM data were then sampled every 24 h at
0:00 UTC to obtain a daily series of SM used as input of Eq. (6) to pre-
ict daily rainfall and irrigation rates. Fig. 3 shows the filtered SM data
nd the results of the sampling, for the full observation period between
pril and November 2017. The data between the 13th and the 14th of
eptember were masked out due to the presence of harvesting machines
n the field that interfered with the measurements. 

Then, the three parameters of the algorithm ( Z ∗ , a and b ) were cal-
brated through an iterative process, by setting their initial values to
he minimum plus 10% of the selected range of variation ( Table 1 ). The
utcomes of the algorithm were finally iteratively compared with the
bserved rainfall plus irrigation rates (Rain + irr calibration) or with the
bserved rainfall rates ( Rain calibration) until the RMSE is minimized. 

The optimized values of the parameters are shown in Table 1 , for
ain + Irr and Rain calibration procedures. The Z ∗ parameter value is par-
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Fig. 4. Rainfall plus Irrigation data derived from Rain + Irr calibration (red line, panel a) and Rain calibration (purple line, panel b) at daily time step. Blue bars 

represent observed rainfall, yellow bars represent observed irrigation. (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 

Table 1 

Calibration parameters ( Z ∗ , a and b ) of the irrigation estimation algo- 

rithm applied to PGR SM data with rainfall plus irrigation (Rain + Irr) 
and rainfall (Rain) calibration. Minimum and maximum iteration 

values are the same for both calibration strategies. 

Iteration value Output calibration value 

Minimum Maximum Rain + Irr Rain 

Z ∗ [mm] 20.00 200.00 52.08 45.34 

a [mm day − 1 ] 0.00 200.00 10.84 12.24 

b [–] 1.00 50.00 6.42 3.49 
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t  
icularly significant: the PGR station is able to sense SM until ~300 mm
f soil (Fig. 1 of Baldoncini et al., 2018 ), but the gamma contribution is
ot uniform with sensing depth. Around 55% of the contribution is de-
ived from the first 50 mm of soil, rising to 70–80% for the first 100 cm
f soil. Considering this and an average porosity around 0.4–0.5, we
xpected a value of Z ∗ around 50, as it is obtained from the calibra-
ion of the algorithm. The variation observed on the parameter values
re ascribed to the different calibration period. Indeed, Rain calibration
erforms the parameters estimation only in days when rainfall occurs.
evertheless, the four parameters maintain the same order of magnitude
nd the obtained results present just minor differences. The similarities
f the two calibration outcomes are also visible in Figs. 4 and 5 , where
he rainfall and irrigation time series at daily resolution derived on the
asis of the two calibration procedures are shown. 

Globally, irrigation and rainfall events are successfully detected by
he proposed algorithm, for both calibration procedures. However, the
lgorithm is not able to well reproduce large rainfall/irrigation events,
articularly if the calibration is carried out with rainfall data only. 

The irrigation time series are calculated by subtracting the observed
ainfall from the algorithm outcomes. This procedure leads to negative
alues in correspondence with rainfall underestimation, e.g. during the
onths of May and September. Therefore, those values have been set

o zero, since they are not related to the irrigation estimation. For both
he calibration procedures, the total amount of rainfall and irrigation
ogether with the two indices, R and RMSE are calculated to evaluate
he performance of the proposed algorithm in the estimation of the ir-
igation series and the rainfall plus irrigation series with respect to the
bserved data (see Table 2 ). 

The two datasets show very good performances in both the estima-
ion of rainfall plus irrigation and irrigation with R greater than 0.88
n each case. The RMSE is around 3 mm/day when considering just
rrigation series and 4 mm/day when considering rainfall plus irriga-
ion series. In fact, when the irrigation is estimated from rainfall plus
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Table 2 

Comparison between estimated and observed rainfall plus irrigation and just irrigation in terms of Pearson 

correlation coefficient, R, and Root Mean Square Error, RMSE. The total Irrigation and Rainfall plus 

Irrigation amounts for observed and estimated series are also shown. 

Irrigation water Rainfall plus Irrigation water 

R [–] RMSE [mm day − 1 ] Tot [mm] R [–] RMSE [mm day − 1 ] Tot [mm] 

Rain + Irr calibration 0.90 2.71 460.09 0.89 4.00 742.28 

Rain calibration 0.88 2.84 462.45 0.88 4.11 742.65 

Observed – – 314.55 – – 752.35 

Fig. 5. Scatter plot of rainfall plus irrigation data at daily time step ob- 

tained after the application of the algorithm calibrated with Rain + Irr data( x 

axis ) and with just Rain data ( y axis). The black dashed line represents the 

best fit linear curve with slope and intercept parameters respectively equal to 

(0.87 ± 0.01)[mm/mm] and (0.23 ± 0.06) mm and coefficient of determination 

r 2 = 0.99. 
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rrigation series, negative values are obtained when rainfall is underes-
imated. Those values have no physical meanings and are not related
o irrigation, therefore they are set to 0. The error component relative
o rainfall underestimation is hence eliminated and the overall error
ecreases. This is also demonstrated by the differences between irri-
ation and rainfall plus irrigation total error: for each calibration the
rrigation amount is always overestimated, whereas the rainfall plus
rrigation amount is underestimated. The suppression of the negative
mpact of rainfall underestimation is responsible of this effect. Finally,
he larger underestimation of the outcomes calibrated with just rainfall
ith respect to the ones calibrated with both rainfall and irrigation is

onfirmed by the comparison of the two calibrations RMSE and total
ater estimated results. As expected, globally Rain + Irr calibration pro-
ides better estimates of irrigation with respect to the Rain calibration,
ecause even if the overall overestimation is greater, this is only due to
he common rainfall overestimation, i.e. false irrigation events. The first
alibration is better in terms of real estimation of irrigation. 

Based on the previous analysis, we can answer the first research ques-
ion. The results show that PGR SM is indeed a reliable information to
erform irrigation estimations. The global lack of irrigation information
or calibration is not a limit for this methodology, as the decrease of per-
ormance when the parameters are calibrated with only rainfall data, is
ery limited and it can be imputed to the smaller number of calibra-
ion data: i.e. the increase of RMSE in estimating rainfall plus irrigation
irrigation) by using Rain calibration rather than Rain + Irr calibration
s around 2.75% (4.8%) while the decrease in Pearson correlation is
round 0.01 (0.02). Hence, the applicability of this methodology is con-
trained by the quality of the SM dataset and its spatial and temporal
esolution. 

.3. Testing satellite temporal resolution 

The application of the proposed algorithm to PGR SM data demon-
trated the potential of using SM to derive irrigation. The good results
btained support the use of SM with high spatial resolution. In view of
he increased spatial resolution of recent satellite missions for remote SM
ensing, it is necessary to test the effect of a lower temporal resolution.
pecifically, synthetic SM time series were created by down-sampling
GR SM data at 24, 36, 48, 72 and 120 h in order to reproduce the
ower temporal resolution of different remote sensing SM data (e.g., 36
o 144 h for SMOS, SMAP and Sentinel-1). Then, in order to apply the
lgorithm for irrigation estimation, the series were linearly interpolated
t daily scale to obtain daily time series of SM from which daily rainfall
nd irrigation are computed. As in the previous analysis, the observed
ainfall was then subtracted from the algorithm outcomes to obtain ir-
igation. 

A further analysis was carried out by considering the rainfall plus
rrigation time series aggregated at 168 h (one week) to average the
esults in a longer period (i.e., less affected by the interpolation approx-
mations). Indeed, the estimation of irrigation at weekly time scale is still
seful for agricultural water management. The performances indices of
rrigation series for daily and weekly analysis are shown in Fig. 6 . 

As expected, the irrigation estimation becomes less accurate as the
M sampling time increases. Nevertheless, the performance drop of daily
ime series, shown in Fig. 6 a and c, is clearly worse than that obtained
ith weekly time series ( Fig. 6 b and d). At daily time scale, the inter-
olated values deviate from the observed values, but this effect can be
veraged by analyzing a longer period. Still the tendency of decreasing
erformance remains, probably due to aliasing problem generated from
he sampling procedure, i.e. the missing of some event due to excessive
ime step. Fig. 6 b, in fact, shows that the performance of the weekly
roduct decreases when SM sampling times greater than 48 h are con-
idered. Moreover, the performance for Rain calibration is always lower
han that for Rain + irr calibration and the discrepancies generally in-
rease with decreasing temporal resolution. The hypothesis in the Rain

alibration procedure of absence of irrigation when rainfall occurs is
robably the main responsible of this behavior. 

Based on the previous results, we can answer to the second research
uestion. A temporal resolution lower than one day can be an issue for
aily irrigation estimation. Still the outcomes can be acceptable if the
emporal resolution is not much greater than 24 h (a Pearson correlation
oefficient of around 0.6 was obtained for the products derived from
6 h sampled SM) or if the objective is moved from the estimation of
aily to weekly irrigation series. In the latter case, we obtained good
esults ( R > 0.7) for SM time sampling up to 48 h. A larger SM sampling
ime is probably too large to correctly follow the natural variation of
M and the performance indices get worse. 
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Fig. 6. Comparison between observed and estimated irrigation series derived from SM data at 24, 36, 48, 72 and 120 h temporal resolution, cumulated at 24 h, (a, 

c) and 168 h (b, d) in terms of Pearson correlation coefficient, R (a, b) and Root Mean Square Error, RMSE (c, d). Red and green lines correspond respectively to the 

results obtained with Rainfall and Irrigation (Rain + Irr) and rainfall (Rain) calibration. 
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. Conclusions 

In this study SM data inferred from PGR spectroscopy measurements
ere used as input for a water balance algorithm with the objective to
uantify irrigation amount. On the basis of the obtained results, the
ollowing conclusions can be drawn. 

• PGR spectroscopy proved to be efficient to measure SM at field scale.
PGR data with hourly frequency are highly sensitive to transient SM
levels and are well correlated with irrigation and rainfall events.
Nevertheless, SM data are quite noisy and needed to be filtered. 

• The proposed algorithm to estimate irrigation shows good perfor-
mances with Pearson correlation coefficient between observed and
estimated daily irrigation greater than 0.88 both when the algorithm
is calibrated with daily rainfall and irrigation data and with just daily
rainfall data. In particular, even if the rainfall plus irrigation calibra-
tion performs better, the Pearson correlation between observed and
estimated irrigation (rainfall plus irrigation) decreases by less than
0.02 (0.01) and the RMSE increases by of 4.8% (2.75%) if the rain
calibration is applied, showing that the methodology is applicable
also when irrigation data are absent. 

• The analysis of data sampled at different time steps, reproducing
the lower temporal resolution of high spatial resolution SM remote
sensing data, shows that the methodology is potentially applicable
also in this case if SM sampling times shorter than 48hare considered.
This is the consequence of the drop in performance observed at lower
temporal resolution due to daily interpolation problems and aliasing
effect. The impact of the interpolation can be partially avoided if an
aggregation of the results is carried out at weekly scale. 

The analysis enabled to address the two research questions above
roposed. In particular: 

(1) SM is a reliable source of information for retrieving irrigation
amounts and the proposed algorithm is effective in doing so, even
in the case in which only rainfall data are used to calibrate the
algorithm. 

(2) The algorithm performs relatively well with daily data. A lower
temporal resolution can be accepted if the SM sampling time is
not greater than 48 h or when the objective is to obtain irrigation
estimates on a time scale longer than one day (e.g. on a weekly
time scale). 

The main purpose of this study was to assess the capabilities of SM
o estimate irrigation water and the potential application of the pro-
osed methodology to HR remote sensing data. This would permit to
uantify irrigation over large regions (e.g., continental scale) without
he need of in situ stations, while accepting a probable decrease in per-
ormance due to the lower spatial and temporal resolution, and lower
ccuracy. Further developments in this direction (e.g. the application of
he methodology directly to HR SM remote sensing measurements) are
urrently being studied and will be the object of future works 
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