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My research motivations
Over 70% of agronomic decisions 

in Italy still rely on empirical 

knowledge, while less than 15% of 

farms use advanced data-driven 

methods 
(Vecchio, Y. et al. (2020). Adoption of Precision Farming Tools: The 

Case of Italian Farmers. Agronomy, 10(1): 18. (MDPI))

Agriculture generates 420 B€/year 

and employs 22 million people, in 

addition climate events have cost 

Italian agriculture over 14 B€ in 

10 years 
(Hannah Ritchie and Ma. Roser (2019), ‘Land Use’, Our World in Data)

Developing innovative 

methods on real data to 

support sustainable 

management in agricultural 

contexts

Gap in the adoption of 

quantitative methods for 

monitoring and managing 

field conditions

Resource-use efficiency 

directly supports income, 

employment, and 

economic resilience

From around 30 publications pre-

2010, precision agriculture surged 

to over 1,100 articles annually by 

2020, driven by digital and 

automated technologies 
(Rejeb, A. et al. (2024). Precision Agriculture: A Bibliometric Analysis 

and Research Agenda. Smart Agricultural Technology 9: 100684)

Casa, R. (2016). Agricoltura di precisione, metodi e tecnologie per 

migliorare l’efficienza e la sostenibilità dei sistemi colturali. 

Edagricole-Edizioni Agricole di New Business Media Srl



Keywords of my research

AGROGEOPHYSICS INNOVATION SUSTAINABILITY

Near-surface geophysics 

applies non-invasive 

methods to assess soil and 

crop properties, linking 

geosciences with agriculture 

to enhance field 

characterization and 

management for improved 

crop production and 

resource efficiency

Application of new or 

existing knowledge to 

develop or improve 

products, processes, or 

methods seeks to create 

added value, enhance 

performance, and 

generate new insights 

through original and 

practical solutions

Fulfilling present needs 

without depleting future 

resources by balancing 

human demands with 

natural limits, ensuring 

the conservation and 

stability of ecosystems to 

support the well-being 

and resilience of future 

generations



Advancements in agrogeophysics

Leveraging 

technological 

approaches and 

physical methods to 

improve soil and 

water sustainability

My PhD 

thesis



In vineyard, agrogeophysics 

made it possible to map vine 

root systems and soil 

conditions in 3D

Joint inversion of CCR and GCR, 

a new approach that improves 

subsurface imaging in vineyards

By identifying how water 

moves underground, the 

model helps manage 

irrigation precisely

Geoelectric joint inversion for 3D imaging of vineyard 

ground *

* Lopane, N., Albéri, M., Barbagli, A., Chiarelli, E., Colonna, T., Gallorini, F., ... & Strati, V. (2024). Geoelectric Joint Inversion for 3D Imaging of Vineyard Ground. Agronomy, 14(11), 2489.
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Location, soil texture and peculiar problem  

“Il  Poggione” estate, Tuscany (Italy) 

Brunello di Montalcino

Loamy texture

 

31.8% sand 

34.9% silt 

33.3% clay 

The vineyard faces a significant irrigation 

challenge, particularly in identifying and 

utilizing available water resources, as 

required for efficient relief irrigation under 

Law 238/2016



Grapevine root architecture: depth and structure

Percentage root concentration

• ~63% in the top 60 cm 

• ~80% within the top 100 cm

Depth drivers

Determined mainly by soil properties:

• Texture

• Bulk density

• Water content

Root structure

• Framework roots: 6–100 mm Ø

• Permanent roots: 2–6 mm Ø

• Lateral roots: respond to water 

and nutrient zones

Maximum root penetration

Soil structure affects maximal root 

depth, requiring favorable 

conditions like the absence of 

compacted layers and gravel-rich 

horizons



Resistivity



Galvanic Contact Resistivity (GCR) 
The Syscal Pro uses 96 electrodes and a 10-channel 

system to inject 1359 currents (~ 150 mA) into the 

soil, measuring resistivity with a transmitter and 

resistivimeter, powered by a 12 V external battery

Strengths

•  Depth range: up to 5 m

•  High subsurface resistivity accuracy

Weaknesses

•  Soil contact via electrodes

•  Setup is labor-intensive

Spatial layout: 16 x 18 m 



Capacitively-Coupled Resistivity (CCR)
The OhmMapper uses ungrounded transmitter and 

receiver dipoles, a tow cable, and control unit to 

inject 16.5 kHz AC (up to 12 V, 16 mA), recording 

resistivity data at 2 Hz

Strengths

•  Non-invasive

•  High resolution shallowest layers

Weaknesses

•  Limited depth penetration

•  Lower accuracy in deeper layers

Spatial layout: 16 x 18 m 



Parameters for geoelectrical surveys
GCR CCR

Electrode distance (m) 1 Cord length (m) 1.25 – 5 – 10

Max depth (m) ~ 5.5 Max depth (m) ~ 3.5

Spread length (m) 16 Run length (m) 18

Number of spreads 6 Number of runs 6

Spread distance (m) 3 Run distance (m) 2.7

Method Dipole-Dipole Method Dipole-Dipole

Acquisition dur (h) 0:48 Acquisition dur (h) 2:17

Min V/I (Ω) 1.45 · 10−5 Min V/I (Ω) 1.90 · 10−5

Max V/I (Ω) 3.01 Max V/I (Ω) 1.52

Max n + 1a (m) 20 Max n + 1a (m) 7

N° measurements 
acquired 5049 N° measurements 

acquired 384
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Joint inversion in geophysics

Joint inversion was first proposed by Vozoff & Jupp (1975) to address ambiguities in single-method inversions by 

combining different geophysical data types

Key advantages



Geoelectrical joint inversion

Both GCR and CCR measure subsurface 

electrical resistivity (in Ω∙m), based on 

Ohm’s law:

𝜌𝑎 =  𝑘
𝑉

𝐼

where 𝑉 is the voltage (in V), 𝐼 is the 

current (in A), 𝑘 is the geometric factor (in 

m).

• GCR: Measures voltage (𝑉) via DC 

through electrodes, with potential 𝛷 (in 

V) given by

𝛷 =
𝜌𝐼

2𝜋𝑟 

• CCR: Uses capacitive coupling, with 

transfer impedance 𝑍 (in Ω)

𝑍 =
1

𝑖𝜔𝐶𝑂
1 −  𝐾𝐸𝑆𝛼

• First-time joint inversion combining two 

geophysical methods measuring the 

same physical quantity (electrical 

resistivity), instead of different ones 

(e.g., seismic and electric).

• First application of this methodology in 

agrogeophysics, providing 3D 

resistivity imaging of a vineyard.

Idea Novelties Expected benefits

• Stronger constraints: using GCR and 

CCR together strengthens the inversion 

by constraining the model with the 

same property, reducing non-

uniqueness.

• Sharper resolution: combining GCR 

and CCR data produced a 3D model 

with 20.21 data/m³, improving 

resolution.

• Multi-scale sensitivity: combining 

GCR and CCR improves depth 

sensitivity: CCR provides surface 

resolution, GCR enables deeper 

characterization.

GCR

CCR



Geoelectrical joint inversion framework

PRE-MODELING INVERSION LOOP



Data inversion processing workflow

Gridding

Inverse 
modelling

Reconstructed 

resistivity distribution

Forward 

modelling

Inverted model Synthetic data

Resistivity distribution Model grid



Data processing

GCR CCR Joint

N° measurements 
acquired 5049 384 -

N° input data 4959 384 5343

A 0.8 correction factor is 

applied to CCR antenna 

length to account for 

non-ideal geometry*

CCR data inversion is

inaccurate due to 

systematic bias affecting

the dipole–dipole geometry

Repeat measurements 

until Q < 5% or 5 

stacks; exclude 

unstable, high-deviation 

data beyond limit

High Q values and noise 

reduce reliability of GCR 

resistivity measurements

Filter by quality factor

Apply correction factor

* M. Neukirch and N. Klitzsch, ‘Inverting Capacitive Resistivity (Line Electrode) 

Measurements with Direct Current Inversion Programs’, Vadose Zone Journal, vol. 9, 

no. 4, pp. 882–892, Nov. 2010, doi: 10.2136/vzj2009.0164.



Constraints setting

TreeMesh

Parametrizations

• Minimum horizontal cell width (dxy): 0.4 m   

• Minimum vertical cell width (dz): 0.25 m

• Total mesh extents: 30 m horizontally - 8 m vertically



Parameters affecting geoelectrical joint inversion

GCR CCR Joint

Range Best Range Best Range Best

Beta ratio 10−4 - 103 102 10−4 - 103 10 10−4 - 103 200

ε 10−4 - 1 10−2 10−4 - 1 10−2 10−4 - 1 10−2

Iterations 3 - 50 12 3 - 50 13 3 - 50 14

Tol F 10−5 - 104 0.04 10−5 - 104 0.01 10−1 - 10 0.003

χ²

Sum of the squared 

differences between 

observed and 

predicted data, 

normalized by the 

expected variance

Regularization

A term that smooths

the model by 

preventing overly 

complex solutions

β

A value controlling 

the weight of the 

regularization in the 

inversion

Objective function

 Combines data fit 

and regularization

Inversion objective function

𝜙(𝑚)  =  𝜙𝑑(𝑚)  +  𝛽𝜙𝑚(𝑚)

𝜙𝑑 𝑚 = data misfit

𝛽𝜙𝑚(𝑚) = model regularization term



Studying β - regularization 

β

Consistent downward trend across all 

methods, indicating convergence of the 

inversion and decreasing influence of the 

regularization term

Regularization

Increases during inversion for all methods, 

consistent with improved model 

smoothness adapted to each method’s 

depth resolution



Studying objective function

Objective function

 Reaches its lowest level in the joint 

inversion, confirming its effectiveness in 

balancing data fit and model regularity

χ²

Decreases from CCR to GCR, with the 

joint inversion showing intermediate 

values, reflecting differences in sensitivity 

to depth and resistivity contrasts



Resistivity sections: 
GCR vs CCR 



Joint resistivity 
sections



GCR-CCR vs Joint results

GCR (up to 5 meters depth)

• Probes deeper layers

• Good depth coverage but loses spatial 

resolution

CCR (up to 3 meters depth)

• High-resolution data for shallow layers

• Reduced accuracy at greater depths

Joint Inversion

• Combines strengths of both methods

• Comprehensive 3D model integrating shallow 

resolution from CCR and deeper probing from GCR



Model

D
a

ta

GCR CCR Joint

GCR 1.04 ⋅ 10−2 27.5 ⋅ 10−2 2.80 ⋅ 10−2

CCR 2.10 ⋅ 10−2 1.91 ⋅ 10−2 1.95 ⋅ 10−2

𝑀𝑖𝑠𝑓𝑖𝑡 =

σ𝑖=1
𝑁 ቀ𝐷𝑜𝑏𝑠,𝑖 − 𝐷𝑠𝑦𝑛,𝑖)2

𝑛

Model performance and misfit analysis

𝜙𝑑−𝑗𝑜𝑖𝑛𝑡 𝑚 = 1 −  𝛼 𝜙𝑑−𝐺𝐶𝑅 𝑚 +  𝛼 𝜙𝑑 − 𝐶𝐶𝑅 𝑚

𝛼= weighted ratio (0-1) 𝜙𝑑(𝑚)= data misfit

Each model simulates 

one acquisition setup. 

Synthetic data align with 

its own observations but 

misfit increases when 

evaluated against non-

corresponding 

acquisition data

A single model 

integrates both 

acquisition setups. 

Synthetic data capture 

varying sensitivities, 

allowing coherent fit 

across datasets and 

improved assessment of 

shared model regions

Single-objective 

models

Joint inversion
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Vineyard root mapping via joint inversion

• Joint inversion detects roots via resistivity contrasts from moisture and electrolyte changes by root activity

• Thicker roots show higher resistivity; thinner roots lower resistivity, revealing structure and distribution

• Root morphology and function comprehensively characterized to 1 m depth through resistivity patterns



Insights from 3D resistivity model
Zones of low resistivity (<20 Ω·m) 

subsurface water

Targeted interventions:

farming practices - soil variability

Water distribution

Impact on vine health:

excess water = trunk diseases

N



Joint resistivity profiles

Unplowed soil

Higher resistivity 

due to better 

water infiltration 

into deeper 

layers

Plowed soil

Lower resistivity 

from compaction 

and reduced 

porosity, limiting 

deep water 

infiltration



Eco-driven solutions

• Develop a 3D resistivity model with 

a high spatial resolution of 20.21 

data/m³ using CCR and GCR data

• Improve subsurface soil 

characterization

OBJECTIVE

• Reduces data misfit more 

effectively than individual 

inversions

• Provides a smooth integration of 

shallow and deep subsurface data

BENEFIT

• Identifies key features like 

subsurface water and the effects of 

soil management

• Provides tools to optimize wine 

quality and vine health

SIGNIFICANCE



Future directions



What I really understood from my PhD? 



THANK YOU FOR YOUR 

ATTENTION!



Agrogeophysical methods and tools

SATELLITE REMOTE SENSING

•Tracks agricultural expansion and urbanization

•Geophysical analysis of spatial land dynamics

•Reflectance (ρ) maps chlorophyll in RGB bands 

•High efficiency and good spectral resolution

AIRBORNE SENSORS

•Maps soil resistivity (Ω·m) in 3D

•Reveals moisture, texture, and structure

•Detects salinity and compaction

GEOELECTRICAL METHODS

𝑉 =  𝐼𝑅 𝜌𝑎 =  𝑘
𝑉

𝐼

GRVI =
ρG −  ρR

ρG +  ρR
GBVI =

ρG −  ρB

ρG +  ρB
BRVI =

ρB −  ρR

ρB +  ρR

NDVI =
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
𝛥𝑆 = 𝑃 − 𝐸𝑇 − 𝑅 − 𝑄





What is agrogeophysics?

Agrogeophysics uses geophysical methods to study soil and water dynamics for 

agricultural optimization

• How do we analyze 

soil properties?
• How do soil-plant-

atmosphere interactions 

affect water and nutrient 

dynamics?

• How can geophysical 

data optimize resource 

management?



• Flavescence Dorée severely damages 

vineyards, demanding early detection

• Ground inspections are slow and fail to 

detect early symptoms

• High-resolution airborn imaging detects 

infected plants early and generates 

actionable maps.

• Soil texture mapping is essential for 

precision agriculture and targeted 

interventions.

• For large areas, direct measurement 

methods are wasteful in terms of time 

and money.

• Airborne Gamma Ray Spectroscopy 

(AGRS) overcomes these issues allowing 

for a fast and efficient mapping of large 

areas.

Airborne methods in agriculture



Emilia-Romagna • 3 surveys: (⁓ 189 km2) 4 hours and 45 

minutes.

• Mean flight height of 104 ± 21 m

• Mean velocity of 102 ± 13 km/h

• Field of view (FOV) of radius 300 m

• Measurements every 300 m.

• Gamma spectra acquired with a time 

resolution of 10 s for a total of 1469 

spectra.

Experimental sites via airborne analysis

• (17.1 hectares vineyard) ⁓5600 

plants/ha

• Mean flight height of 96 m

• Mean velocity of 73 km/h

• Line spacing 25 m.

• 1015 georeferenced photograms

Mezzano lowland, Ferrara

Forlì



Instrumentation and analysis
16 L NaI(Tl) crystals surrounded by 1 mm thick stainless steel 

housings (4 modules).

6.8 % energy resolution at 662 keV (137Cs).

Minimum Detectable activity Concentration (MDC) and 

Abundance (MDA):

Full spectrum analysis with 137Cs, 40K, 238U and 232Th simulated 

fundamental spectra (assuming secular equilibrium conditions)

MDC

40K 16 Bq/kg

238U 4.94 Bq/kg

232Th 3.25 Bq/kg

MDA

0.05 · 10-2 g/g K

0.4 μg/g U

0.8 μg/g Th

Camera: Sony α 7R IV Mirrorless Full-Frame, 61 MP, 

35 mm lens, nadiral position for high-quality frames

Image quality: 1.1 cm/pixel resolution with >65% overlap 

(consecutive) and >70% overlap (adjacent)

1.1 cm x 1.1 cm orthomosaic



Unpacking the Machine Learning algorithm

• Data flows sequentially from left to right in the 

architecture

• Each node in layer 𝑖 connects to all nodes in the previous 

layer 𝑗.

• Node: input multipied by a weight → summing the results 

→ adding a bias → applying an activation function

𝑦𝑖
′ = 𝑓 

𝑗

 

𝑤𝑖𝑗𝑥𝑗 + 𝑏𝑖


𝑗

 

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1𝑗𝑥𝑗 + 𝑏𝑖

1

2

3

4

𝑦1
′

𝑦4
′

𝑦′ = 𝑥
𝑦′ = 0

𝑥

𝑦′

0

ReLU activation 

function

The algorithm processes processes data over epochs

Weights and biases updated after each epoch

Performance evaluated via accuracy and loss



Hyperparameters tuning
Hyperparameters chosen by trial and error

Hyperparameters Tested values

Layer number 2 - 4 - 8

Layer density 4 - 16

Optimizer

Adadelta, Adagrad, 
Adam, Adamw, 

Adamax, Nadam, 
Adafactor, Ftrl, 

RMSprop and SGD

Batch size 4 – 8 – 16 – 32 - 64

Epoch number max 40

Learning rate 
10−4 - 𝟏𝟎−𝟑 - 10−2 -  

10−1 

Activation function ReLU



Hyperparameters tuning

• Layer number = 2 - 4 - 8

• Layer density = 4 - 16

• Optimizer = Adadelta, Adagrad, Adam, Adamw, Adamax, Nadam, Adafactor, Ftrl, RMSprop and SGD

• Batch size = 4 – 8 – 16 – 32 - 64

• Epoch number = max 40

• Learning rate = 10−4 - 𝟏𝟎−𝟑 - 10−2 -  10−1 

• Activation function: ‘ReLU’

Hyperparameters chosen by trial and error



• By not being bound to a linear relation, ML 

predictions more accurately follow data in the 

textural triangle.

Advantages of Machine Learning

• Higher R2 scores for sand and clay content 

predictions.

SLR SLR

NLML 

(2022)

NLML

(2022)

R2 = 0.46 R2 = 0.45

R2 = 0.52 R2 = 0.49

R2 = 0.52R2 = 0.53

• The recent (2024) study achieves higher R2 

showing stronger prediction accuracy. 

Enhanced parameter optimization improves 

modeling of nonlinear relationships missed in 

the 2022 work.

• The recent 2024 study increases resolution 

to 20 m x 20 m (from 500 m x 500 m in 

2022). Advanced neural networks enable 

finer and more accurate soil classifications.

NLML 

(2024)

NLML 

(2024)



Enhancing FD detection methods

New spectral indices

GBVI and BRVI outperform GRVI, 

addressing shadows, glare, and 

man-made elements

Automated pipeline

Python-based system processes RGB data, removes noise, and 

isolates diseased plants

𝐆𝐑𝐕𝐈 =
ρG − ρR

ρG + ρR

𝐆𝐁𝐕𝐈 =
ρG − ρB

ρG + ρB
𝐁𝐑𝐕𝐈 =

ρB −  ρR

ρB +  ρR

(A)

(C)(B)



Advantages of AGRS measurements

• AGRS cover is 

much more 

homogeneous.

• 1469 gamma 

spectra were 

acquired, more than 

5x the amount of 

RER 

measurements.

• Direct RER 

measurements are 

taken unevenly in 

the surveyed area.

• A total of 273 

measurements were 

taken by RER.



• During sedimentary filling, coarser grained 

particles like sand are deposited first,. 

gradually followed by finer grained particles 

like clay.

• The abandonment of the Eridano, Proto-Idice 

and Proto-Valreno channels led to the 

sedimentary filling of their riverbeds.

Hydrographic interpretation of the results

• The narrow-shaped features present in the soil 

texture prediction maps retrace the abandoned 

riverbeds of Proto-Idice and Proto-Valreno.



Localized risk

High-density areas 

(26%-50%) confined 

to northeast. 

Sparse infections in 

southwest and west 

suggest early-stage 

spread.

Spatial insights for sustainable disease management

Validation

19 true positives; 

high specificity 

(0.96). 

Cautious detection 

ensures minimal 

disease oversight.

Sustainability focus

Precision mapping 

reduces chemicals 

and targets critical 

zones. 

Supports efficient 

vineyard 

management.
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