

New challenges in the spectral reconstruction of terrestrial gamma rays and reactor antineutrinos

Marica Baldoncini

Barcelona Supercomputing Center Centro Nacional de Supercomputación

CGT Centro di GeoTecnologie Università degli Studi di Siena

Supervisor: Prof. Fabio Mantovani Ph.D. in Physics - Cycle XXIX - Ferrara 10 April 2017

Summary

Summary

New challenges in...

...the spectral reconstruction of...

...terrestrial gamma rays and..

.. reactor antineutrinos

Antineutrinos from reactors: a global view

Nuclear power plants are the strongest man made antineutrino sources
 (L ~ 2 × 10²⁰ v/sec for 1 GW thermal power)

Liquid scintillation detectors: moving from the Short BaseLine (SBL) (~1km) and Long BaseLine (LBL) era (~200 km) towards the Medium BaseLine (MBL) era (~50 km)

Goal of the work:

- provide on the base of reactors official data a worldwide reference model required for estimating the reactor signal for LBL experiments
- estimating signal uncertainty starting from the uncertainties on individual input quantities

Reactor antineutrinos: a fundamental background for geoneutrino measurements

Inverse Beta Decay (IBD) Reaction

The ratio r between the reactor signal in the LER (R_{LER}) and the geoneutrino signal (G) changes in time according to the different reactor operational conditions

 Low Energy Region (LER): energy range starting at 1.806 MeV (IBD threshold) and ending at 3.3 MeV (end point of ²¹⁴Bi spectrum)

- High Energy Region (HER): energy range starting at 3.3 MeV and ending at 8 MeV (end point of reactor spectrum)
- Full Energy Region (FER) = LER + HER

Reactor thermal power and fission fractions

- ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu give > **99%** of the fissions
- A single fission process involves :
- the emission of ~ 6 antineutrinos
- ~ 2 antineutrinos above IBD threshold
- the production of <Q> ~ 200 MeV

R = total fission rate [fissions/sec] f_i = relative fission yield, i.e the **fraction** of fissions produced by the *ith* isotope Q_i = energy released in one fission of the *ith* isotope [MeV/fission]

Fissile isotope	<i>Q_i</i> [MeV/fission]
²³⁵ U	202.36 ± 0.26
²³⁸ U	205.99 ± 0.52
²³⁹ Pu	211.12 ± 0.34
²⁴¹ Pu	214.26 ± 0.33

Fission fractions and power fractions collection

 $p_i = \frac{f_i Q_i}{\sum_{i=1}^{4} f_i Q_i}$ **p**_i is the **fraction of P**_{th} produced by the fission of the *ith* isotope

$$\frac{dN_i^{fiss}}{dt} = LF \cdot P_{th} \frac{p_i}{Q_i}$$

Extensive collection of different sets of fission/power fractions from literature

Reactor antineutrino signal calculation

The reactor antineutrino signal evaluation requires several ingredients for modeling the three antineutrino life stages:

- production at reactor cores
- ✓ **propagation** to the detector site
- detection in liquid scintillation detectors

- p_k = power fraction

Reactor antineutrino signal calculation

The reactor antineutrino signal evaluation requires several ingredients for modeling the three antineutrino life stages:

- ✓ **production** at reactor cores
- ✓ propagation to the detector site
- ✓ detection in liquid scintillation detectors

Reactor and geoneutrino signals at 6 experimental sites

Experiment	G [TNU]	R _{LER} [TNU]	$r = R_{LER}/G$	Year	
		168.5 ^{+5.7} -6.3	5.4	2006	
KamLAND	31.5 ^{+4.9} -4.1	18.3 ^{+0.6} -1.0	0.6	2013	
		7.4 ^{+0.2} -0.2	0.2	2014	Ohi 3 and Ohi 4 powered off
		26.0 ^{+2.2} -2.3	0.7	2013	
JUNO	39.7 +6.5 -5.1	53.9 ^{+3.0} -2.8	1.4	2014	
		354.5 ^{+44.5} -40.6	8.9	2020	Taishan fully powered on in 2020
Borexino	40.3+7.3	22.2 ^{+0.6} -0.6	0.6	2013	
SNO+	45.4 ^{+7.5} -6.3	47.8 ^{+1.7} _{-1.4}	1.1	2013	
RENO-50	42.1 ^{+7.2} -5.9	178.4 ^{+20.8} -19.6	4.2	2013	
Hanohano	12.0+0.7	0.9 ^{+0.02} -0.02	0.1	2013	Long Baseline
					experiments: 1σ ~ 4% in LER

Signal uncertainty due to individual inputs

		1σ on signal in FER [%]		
Input qu	antity	Borexino	KamLAND	SNO+
	$\delta m^2 (eV)^2$	<0.1	0.9	<0.1
V oscillation	$sen^2 \theta_{12}$	+2.4/-2.2	+2.1/-2.0	+2.4/-2.2
oscination	$sen^2 heta_{13}$	0.4	0.4	0.4
	Q _{235U}			
Energy per	Q 238U	<0.1	<0.1	<0.1
fission	Q _{239Pu}	<0.1		
	Q _{241Pu}			
	f 235U			
Fission	f 238U	0.1	0.5	<0.1
fraction	f 239Ри	0.1		
	f 241Pu			
Thermal	Pth	0.2	0.9	0.3
Power	• 1/1		0.0	
IBD cross section	$\sigma_{\it ibd}$	<0.1	<0.1	<0.1

✓ Reactor signal uncertainty dominated
 by sin²(∂₁₂)

- Results are time dependent (2013 status) and site dependent
- Signal uncertainty due to P_{th} reflects the signal amount generated by single reactors (for KamLAND 60% of the signal originated by 2 cores)

✓ Negligible (<0.1%) uncertainty from Q_i and $\sigma_{\rm IBD}$

Borexino, KamLAND and SNO+ signal distance profile

SNO+ profile has 2 major discontinuities

- ✓ 1st is ~38% at ~240 km (Canadian Bruce)
- ✓ 2nd is ~56% at ~350 km (Canadian Pickering and Darlington)
- For d > 500km the profile levels out (USA stations)

BX profile is **smooth**

- Signal spread out over the European countries
- Closest power station at 415 km (Slovenia) gives the major fraction of the signal (~3%)

Borexino and KamLAND signal time profile

 Seasonal signal variation associated with the lower fall-spring electricity demand

 Relatively insensitive to operational conditions of single reactors since there are no close-by reactors dominating the antineutrino flux

- ✓ Signal time profile governed by the Japanese nuclear industry operational status
- Shutdown of nuclear power plants concomitant to strong earthquakes manifestly visible
- Sensitive to operational conditions of single reactors

Borexino and KamLAND signal time profile

 Seasonal signal variation associated with the lower fall-spring electricity demand

 Relatively insensitive to operational conditions of single reactors since there are no close-by reactors dominating the antineutrino flux

- ✓ Signal time profile governed by the Japanese nuclear industry operational status
- Shutdown of nuclear power plants concomitant to strong earthquakes manifestly visible
- Sensitive to operational conditions of single reactors

Borexino and KamLAND signal time profile

 Seasonal signal variation associated with the lower fall-spring electricity demand

 Relatively insensitive to operational conditions of single reactors since there are no close-by reactors dominating the antineutrino flux

- ✓ Signal time profile governed by the Japanese nuclear industry operational status
- Shutdown of nuclear power plants concomitant to strong earthquakes manifestly visible
- Sensitive to operational conditions of single reactors

Outcomes of this work

The web page **www.fe.infn.it/antineutrino** provides an **updated collection** of data about worldwide nuclear reactors for calculation of antineutrino signal

2003	2004	2005	2006
 Input database 			
 Numerical map 			
• Map	• Мар	• Map	• Map
2007	2008	2009	2010
 Input database 			
 Numerical map 			
• Map	• Map	• Map	• Map
2011	2012	2013	2014
 Input database 			
 Numerical map 			
	• Man	• Man	• Man

2015 • Input database

• Map

Outcomes of this work

The web page www.fe.infn.it/antineutrino provides an updated collection of data about worldwide nuclear reactors for calculation of antineutrino signal

- Global: performance data of all reactors in the world
- ✓ Monthly Load Factors (%)
- Public, official and free
- Latitude and longitude of reactors
- Multitemporal: time lapse of 12 years (2003 2015)
- Direct implementation thanks to standard file

Outcomes of this work

The web page www.fe.infn.it/antineutrino provides an updated collection of data about worldwide nuclear reactors for calculation of antineutrino signal

- Global: performance data of all reactors in the world
- Monthly Load Factors (%)
- Public, official and free
- Latitude and longitude of reactors
- Multitemporal: time lapse of 12 years (2003 2015)
- Direct implementation thanks to standard file

2015 2016 2017

Baldoncini M., et al. - *Reference worldwide model for antineutrinos from reactors.* **Phys. Rev. D** 91, 065002, (2015).

New challenges in...

... the spectral reconstruction of...

...terrestrial gamma rays and..

.. reactor antineutrinos

Gamma-ray spectroscopy for studying the Earth

Calibrating an Airborne Gamma-Ray Spectrometer

GOAL: understand the **detector response function** to a known radioactive source

 $N = C \cdot FS$

Measurement of gamma spectra at natural calibration sites

HPGe measurement of radioactive content on collected samples

Calibrating an Airborne Gamma-Ray Spectrometer

GOAL: understand the detector response function to a known radioactive source

 $N = C \cdot FS$

Measurement of gamma spectra at natural calibration sites Experimental Fundamental Spectra (EFS)

Monte Carlo Fundamental Spectra (MCFS)

HPGe measurement of radioactive content on collected samples

Monte Carlo simulation strategy

Monte Carlo simulation strategy

Monte Carlo simulation strategy

A shift of the photon arrival position is equivalent to a shift of the photon emission point, without changing photon track.

The detector is **sandwiched** between the layers of upward and downward moving photons

Experimental and Monte Carlo Fundamental Spectra

r²

Outcomes and perspectives of this study

- Validation of the Monte Carlo method for the AGRS_16L efficiency calibration
- For the first time we have 3 cards to play: Window
 Analysis Method, FSA-EFS and FSA-MCFS
- Monte Carlo simulation solves the problem of providing the detector response function to anthropic radionuclides (e.g. ¹³⁷Cs fallout)
- New detection systems (e.g. UAV, mosaic detectors) characterized by different performances are entering the business of homeland security

Outcomes and perspectives of this study

- Validation of the Monte Carlo method for the AGRS_16L efficiency calibration
- For the first time we have 3 cards to play: Window
 Analysis Method, FSA-EFS and FSA-MCFS
- Monte Carlo simulation solves the problem of providing the detector response function to anthropic radionuclides (e.g. ¹³⁷Cs fallout)
- New detection systems (e.g. UAV, mosaic detectors) characterized by different performances are entering the business of homeland security

Caciolli, A., **Baldoncini, M.**, et al., A new FSA approach for in situ γ ray spectroscopy. Science of The Total Environment.

Invitation to international AGC (**Aero Gamma Spectrometry Campaign**) in June 2017 in Zurich

New challenges in...

...the spectral reconstruction of...

...terrestrial gamma rays and ..

and Bark

.. reactor antineutrinos

Offshore background calibration flights for AGRS

GOAL: understand background radiation

- cosmic radiation due to the interaction of secondaries with the air and equipment
- ✓ aircraft radiation due to K, U and Th in the equipment
- **atmospheric radon** exhaled from rocks and soils

HOW: acquisition of gamma spectra over water at different heights

- ✓ 4 offshore airborne gamma-ray surveys have been performed for a ~5 hour acquisition time
- the (77 3066) m altitude range has been explored
- 17612 gamma spectra have been acquired

Gamma cosmic radiation and dose

- At E>3 MeV all gamma radiation has cosmic origin
- ✓ The gamma component of the cosmic radiation has been measured by monitoring the Cosmic Energy Window (CEW) (3 7) MeV
- In the lower atmosphere the intensity of the cosmic gamma radiation exponentially increases with increasing altitude

The AGRS detector has been **calibrated** for the **cosmic effective dose** by adopting cosmic dose values provided by the CARI-6 software (US Federal Aviation Administration)

Cosmic spectral shape

- ✓ The cosmic component of a measured gamma spectrum can be reconstructed in the Cosmic Energy Window (CEW) (3 − 7) MeV Natural Energy Window (NEW) (0.8 − 3) MeV
- CEW: the counting statistics has pure cosmic nature but the sole reconstruction of the high energy tail is affected by large uncertainties

Energy Window	γ line (MeV)	Energy range (MeV)	Count rate at 2100 m [cps]
Potassium	1.46 (⁴⁰ K)	1.37 – 1.57	0.33
Bismuth	1.76 (²¹⁴ Bi)	1.66 – 1.86	0.27
Thallium	2.61 (²⁰⁸ TI)	2.41 - 2.81	0.15
Cosmic	/	3.00 - 7.00	41.9

Cosmic spectral shape

- ✓ The cosmic component of a measured gamma spectrum can be reconstructed in the Cosmic Energy Window (CEW) (3 − 7) MeV Natural Energy Window (NEW) (0.8 − 3) MeV
- CEW: the counting statistics has pure cosmic nature but the sole reconstruction of the high energy tail is affected by large uncertainties
- CEW+NEW: the ⁴⁰K,²¹⁴Bi and ²⁰⁸Tl points aid constraining the low energy trend of the cosmic shape, necessary to separate the K, U and Th constant aircraft component
- The cosmic spectral shape has been reconstructed at 2100 m as

cps = (0.54 \pm 0.04) $E^{(-1.49 \pm 0.05)}$ +(0.02 \pm 0.01)

Energy Window	γ line (MeV)	Energy range (MeV)	Count rate at 2100 m [cps]
Potassium	1.46 (⁴⁰ K)	1.37 – 1.57	0.33
Bismuth	1.76 (²¹⁴ Bi)	1.66 – 1.86	0.27
Thallium	2.61 (²⁰⁸ TI)	2.41 - 2.81	0.15
Cosmic	/	3.00 - 7.00	41.9

Cosmic spectral shape

- ✓ The cosmic component of a measured gamma spectrum can be reconstructed in the Cosmic Energy Window (CEW) (3 – 7) MeV Natural Energy Window (NEW) (0.8 – 3) MeV
- CEW: the counting statistics has pure cosmic nature but the sole reconstruction of the high energy tail is affected by large uncertainties
- CEW+NEW: the ⁴⁰K,²¹⁴Bi and ²⁰⁸Tl points aid constraining the low energy trend of the cosmic shape, necessary to separate the K, U and Th constant aircraft component
- The cosmic spectral shape has been reconstructed at 2100 m as

cps = (0.54 \pm 0.04) $E^{(-1.49 \pm 0.05)}$ +(0.02 \pm 0.01)

Energy Window	γ line (MeV)	Energy range (MeV)	Count rate at 2100 m [cps]
Potassium	1.46 (⁴⁰ K)	1.37 – 1.57	0.33
Bismuth	1.76 (²¹⁴ Bi)	1.66 – 1.86	0.27
Thallium	2.61 (²⁰⁸ TI)	2.41 - 2.81	0.15
Cosmic	/	3.00 - 7.00	41.9

Cosmic background and minimum equivalent abundances

Linear regressions between the count rates in one energy window (⁴⁰K, ²¹⁴Bi and ²⁰⁸TI) and the cosmic count rates provide:

b: cosmic stripping ratio

a: constant background count rate due to the aircraft radioactivity

For the first time the	Isotope	MEA	Aircraft cps
minimum equivalent	К	0.05·10 ⁻² g/g	3.7 ± 0.4
K, U and Th have been	U	0.4 μg/g	2.0 ± 0.4
calculated	Th	0.8 μg/g	1.58 ± 0.04

Count rate CEW [cps]

Cosmic background and minimum equivalent abundances

Linear regressions between the count rates in one energy window (⁴⁰K, ²¹⁴Bi and ²⁰⁸TI) and the cosmic count rates provide:

- b: cosmic stripping ratio
- a: constant background count rate due to the aircraft radioactivity

For the first time the	Isotope	MEA	Aircraft cps
minimum equivalent	К	0.05·10 ⁻² g/g	3.7 ± 0.4
K, U and Th have been	U	0.4 μg/g	2.0 ± 0.4
calculated	Th	0.8 µg/g	1.58 ± 0.04

Workshop on AGRS

Ferrara 8-15 Oct. 2016 Dr. Brian Minty received **Copernicus Visiting Scientist award**

Diaital Library

Baldoncini M., Albèri M., Bottardi C., Mantovani F., Minty B., Raptis K., Strati V. Airborne gamma-ray spectroscopy for modeling cosmic radiation and effective dose in the lower atmosphere. Submitted to IEEE Transactions on Geoscience and Remote Sensing

New challenges in...

...the spectral reconstruction of...

...terrestrial gamma rays and.

.. reactor antineutrinos

²²²Rn: a phantom gamma background source in the lower atmosphere

²²²Rn is the only gaseous product of the ²³⁸U decay chain. The relatively long half-life (τ_{1/2} = 3.82 days) allows ²²²Rn to exhale from soils and rocks and diffuse into the atmosphere

- ²²²Rn is an interesting natural tracer for studying processes in the atmospheric boundary layer (e.g. vertical air mixing, atmospheric pollutants, climate and chemical transport models)
- The most prominent gamma-ray emitter (²¹⁴Bi) occurs below ²²²Rn: the presence of ²²²Rn in the atmosphere mimics the signal due to ²³⁸U in the soil

²²²Rn: a phantom gamma background source in the lower atmosphere

²²²Rn is the only gaseous product of the ²³⁸U decay chain. The relatively long half-life (τ_{1/2} = 3.82 days) allows ²²²Rn to exhale from soils and rocks and diffuse into the atmosphere

- ✓ ²²²Rn is an interesting natural tracer for studying processes in the atmospheric boundary layer (e.g. vertical air mixing, atmospheric pollutants, climate and chemical transport models)
- The most prominent gamma-ray emitter (²¹⁴Bi) occurs below ²²²Rn: the presence of ²²²Rn in the atmosphere mimics the signal due to ²³⁸U in the soil

The state of art on ²²²Rn with AGRS in the lower atmosphere

surveys. Geoscience Australia

Theoretical model for the ²²²Rn count rate in the BiEW

The model adopts a two strata ²²²Rn vertical profile

 $a_{Rn} = - \begin{cases} Const (z < s) \\ 0 (z > s) \end{cases}$

The expected count rate due to atmospheric ²²²Rn is modeled on the base of ²¹⁴Bi **unscattered photons propagation**

$$n_{Rn}(a_{Rn},z) = \Theta(s-z) \Big[n_{I}(a_{Rn},z) + n_{2}(a_{Rn},z) \Big] + \Theta(z-s) n_{3}(a_{Rn},z)$$

$$n_{Rn}(z) = \Theta(s-z) \Big[a_{Rn} \int d\cos\theta \Big(1 - exp \Big(-\frac{\mu z}{\cos\theta} \Big) \Big) + a_{Rn} \int d\cos\theta \Big(1 - exp \Big(-\frac{\mu (s-z)}{\cos\theta} \Big) \Big) \Big]$$

$$+ \Theta(z-s) \Big[a_{Rn} \int d\cos\theta \exp \Big(-\frac{\mu (z-s)}{\cos\theta} \Big) \Big(1 - exp \Big(-\frac{\mu s}{\cos\theta} \Big) \Big) \Big]$$

The count rate profile is governed by the ^{214}Bi photon mean free path μ^{-1} , by the ^{222}Rn abundance a_{Rn} and by the mixing layer depth s

²²²Rn measurement with AGRS

The theoretical model is applied for fitting the experimental count rate in the Bi Energy Window (BiEW), collected in **14688** gamma spectra acquired over the sea in the (**77 – 3066**) m altitude range

A \pm δ A [cps]	μ ± δμ [m ⁻¹]	$B \pm \delta B$ [cps]	$a_{Rn} \pm \delta a_{Rn}$ [Bq/m ³]	s ± δs [m]
8.2 ± 0.2	(2.54 ± 0.0.6)·10 ⁻⁴	-4.9 ± 0.2	0.96 ± 0.07	1318 ± 22

The refined model fits the data better than the standard model and the mean 222 Rn concentration and mixing layer depth are in perfect agreement with the data published in literature ($a_{Rn} \sim 1Bq/m^3$; s ~ 1500 m)

²²²Rn measurement with AGRS

The theoretical model is applied for fitting the experimental count rate in the Bi Energy Window (BiEW), collected in **14688** gamma spectra acquired over the sea in the (**77 – 3066**) m altitude range

A \pm δ A [cps]	μ ± δμ [m ⁻¹]	$B \pm \delta B$ [cps]	$a_{Rn} \pm \delta a_{Rn} [Bq/m^3]$	s ± δs [m]
8.2 ± 0.2	(2.54 ± 0.0.6)·10 ⁻⁴	-4.9 ± 0.2	0.96 ± 0.07	1318 ± 22

The refined model fits the data better than the standard model and the mean 222 Rn concentration and mixing layer depth are in perfect agreement with the data published in literature ($a_{Rn} \sim 1Bq/m^3$; s ~ 1500 m)

CONCLUSIONS

CONCLUSIONS

List of publications

Baldoncini M., Albèri M., Bottardi C., Mantovani F., Minty B., Raptis K., Strati V. *Airborne gamma-ray spectroscopy for modeling cosmic radiation and effective dose in the lower atmosphere*. **Submitted to IEEE Transactions on Geoscience and Remote Sensing (IF: 3.514)**

Baldoncini M., Albèri M., Bottardi C., Mantovani F., Minty B., Raptis K., Strati V. *Exploring atmospheric radon with airborne gamma-ray spectroscopy*. Submitted to Atmospheric Chemistry and Physics (IF: 5.626)

KaceliXhixha, M., Albèri, M., **Baldoncini, M.**, Bezzon, G.P., Buso, G.P., Callegari, I., Casini, L., Cuccuru, S., Fiorentini, G., Guastaldi, E., Mantovani, F., Mou, L., Oggiano, G., Puccini, A., Rossi Alvarez, C., Strati, V., Xhixha, G., Zanon, A.. *Map of the uranium distribution in the Variscan Basement of Northeastern Sardinia.* **Journal of Maps** (2015) (IF: 1.435)

Xhixha, G., Alberi, **M., Baldoncini**, M., Bode, K., Bylyku, E., Cfarku, F., Callegari, I., Hasani, F., Landsberger, S., Mantovani, F., Rodriguez, E., Shala, F., Strati, V., Kaçeli Xhixha, M. *Calibration of HPGe detectors using certified reference materials of natural origin.* **Journal of Radioanalytical and Nuclear Chemistry** (2015) (IF: 0.983)

Xhixha, G., **Baldoncini, M.**, Callegari, I., Colonna, T., Hasani, F., Mantovani, F., Shala, F., Strati, V., and Xhixha Kaceli, M. A century of oil and gas exploration in Albania: Assessment of Naturally Occurring Radioactive Materials (NORMs). Chemosphere 139, 30-39, (2015) (IF:3698)

Baldoncini, M., Callegari, I., Fiorentini, G., Mantovani, F., Ricci, B., Strati, V. and Xhixha, G. *Reference worldwide model for antineutrinos from reactors*. Physical Review D 91, 065002 (2015) (IF: 4.506)

Strati, V., **Baldoncini, M.**, Bezzon, G. P., Broggini, C., Buso, G. P., Caciolli, A., Callegari, I., Carmignani, L., Colonna, T., Fiorentini, G., Guastaldi, E., Kaçeli Xhixha, M., Mantovani, F., Menegazzo, R., Mou, L., Rossi Alvarez, C., Xhixha, G., and Zanon, A. *Total natural radioactivity, Veneto (Italy).* Journal of Maps, 1-7 (2014) (IF: 1.435)

Guastaldi, E., **Baldoncini, M.**, Bezzon, G., Broggini, C., Buso, G., Caciolli, A., Carmignani, L., Callegari, I., Colonna T., Dule, K., Fiorentini, G., Kaçeli Xhixha, M., Mantovani, F., Massa, G., Menegazzo, R., Mou, L., Rossi Alvarez, C., Strati, V., Xhixha, G., Zanon, A., *A multivariate spatial interpolation of airborne γ-ray data using the geological constraints*. **Remote Sensing of Environment**, 137 (2013) 1-11 (IF: 5.881)

Caciolli, A., **Baldoncini, M.**, Bezzon, G.P., Broggini, C., Buso, G.P., Callegari, I., Colonna, T., Fiorentini, G., Guastaldi, E., Mantovani, F., G. Massa, R. Menegazzo, L. Mou, C.R. Alvarez, M. Shyti, A. Zanon, G. Xhixha, *A new FSA approach for in situ γ ray spectroscopy*. **Science of The Total Environment**, 414 (2012) 639-645 (IF: 3.976)