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Scientific motivation

* World’s population is expected to grow to 9.1 Billion people by 2050,
with a 70% increase in food demands across the world (FAO, 2014)

* Unlike demands, land and water resources are limited
* 70% of global freshwater is already used by agriculture

!

* Resource efficiency must increase:
» Better land use for high yield productions
* Reduced water wastes 0
* Reduced use of fertilizers and pesticides

* Disease monitoring and prevention
strategies

* Smart agriculture through quantitative and measured data
* Highly accurate sensing technologies



Some highlights from my PhD journey
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Radioelements and soil texture

 Small soil particles (mostly those smaller Clay Silt Sand
than 1 pm) can act as colloids and adsorb <0.002mm  0.002-0.05mm  0.05-0.2mm
cations. . @ Q
 The sum of the exchangeable cations in the
soil is called the Cation Exchange Capacity ., e
(CEC). e i bl AT OO

* Clay and silt soil fractions have high specific
surface and high CEC so they can adsorb
cations and specifically positively ionized
natural radioelements (K*, U%, U®* Th**).

Natural radioelements concentration in the
soil is correlated to soil texture.

50 CEC R CECR
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Data taking surveys

* Accurate soil texture mapping is key in
precision agriculture for planning cultivations
and targeting interventions.

* For large areas, direct measurement methods
are wasteful in terms of time and money.

 Airborne Gamma Ray Spectroscopy (AGRS)
overcomes these issues allowing for a fast and
efficient mapping of large areas.

e 3 surveys over the Mezzano Lowland, Ferrara (~ 189
km?2) for a total of 4 hours and 45 minutes.

* Mean flight height of 104 £ 21 m

* Mean velocity of 102 + 13 km/h

* Field of view (FOV) of radius 300 m
* Measurements every 300 m.

 Gamma spectra acquired with a time resolution of 10 s
for a total of 1469 spectra.
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Instrumentation and analysis

Counts per seconds [cps / 8 keV]
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16 L Nal(Tl) crystals surrounded by 1 mm thick
stainless steel housings (4 modules).

6.8 % energy resolution at 662 keV ($37Cs).

Minimum Detectable activity Concentration (MDC)
and Abundance (MDA):

MDC MDA
40K 16 Bg/kg 0.05-102%g/g K
238 4.94 Bqg/kg —_ 0.4 ug/g
232Th 3.25 Bg/kg 0.8 ug/g Th

Full spectrum analysis with 2381 and
ecular

simulated fundamental spectra (assuming s
equilibrium conditions).



Model inputs and data manipulation
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Correlation between texture and gamma

Frequency [%]

Linear Regression (LR)

Previous studies:
Van Der Klooster, E. et al. [0.1111/].1365-2389.2011.01381.x]

Mahmood, H. S. et al.[10.3390/5131216263]

Spadoni, M. and Voltaggio, M. [0.1016/i.gexpl0.2012.10.016]
Elbaalawy, A. M. et al. [10.5958/2395-146%.2016.00038.7]

Petersen, H. et al. [10.1002/ipIn.201100408]

My study
50 ———/mmT—T—T 80
e Clay
o Silty clay ° 70
40 [ ° Silty clay loam o 0ol
o Clay loam o D 60
o Sandy clay loam  © §5E&
o Loam oo — 50
30 [ e Sandyloam , &g X
o O —_—
o 40
®©
20 ? 30
20
10 7 y
10
0 ::':/:I.:::"I::::I::::I::::I:::: °\._°,O:
20 b & 20 ¢
< [
10 | d E ; 2 10 ¢
o : ]
0 e 0
“ 000 025 050 075 1.00 1.25 1.0

000 025 050 075 1.00 125 1.50
a(K) [%]

a(K) [%]

Non-Linear Machine Learning (NLML)

Previous studies:

My study:
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http://dx.doi.org/10.1111/j.1365-2389.2011.01381.x
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http://dx.doi.org/10.1016/j.gexplo.2012.10.016
http://dx.doi.org/10.5958/2395-146X.2016.00038.7
http://dx.doi.org/10.1002/jpln.201100408

 Data flows from left to right in the algorithm’s
architecture.

* In a Deep Neural Network, each node in a layer i
receives data from each node of the previous
layer j.

e Each node performs the following operations:

e Each received input is multiplied by a weight.
* The weighted values are summaed.
* A biasis added.

* The result is passed through an activation
function to the next layer.

O




Learning epoch by epoch

* The data is fed to the algorithm multiple times, called
epochs.

 Between each epoch, the algorithm changes its
learned parameters (weights and biases) to better
model the input data.

> * After each epoch, performances are evaluated in
Epochs . .. ,
T terms of accuracy (quality of the predictions y; ;)
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Preparing the dataset for analysis

o000 oe .Training
sssiiiiiiin, e Validation
..................... .Test
....l...O................
I............................
.....l.........................
...........I..'....l........... o 0eoe ®
.............................................
...O...................l................0..
.............................l.............
...........................................
.........................................l.
..........................................
..............l..........................
....................l....l............
0000 ..................I. L N W
..............l...
. o ..................
Training dataset: 578 data used for training o::o.::.oo....:....
L oS00 000 o e0
the algorithm , N sesdeeeeennnse:
Validation dataset: 72 data u§ed for a live -:::::::::::::
performance check during training B00a8E2e 2900
Test dataset: 73 data used for testing the N eeees
ithm’s final performances . Tees
algorithm’s final p Subdivision made roughly preserving “ e

spatial distribution of data.



Hyperparameters explained

Hyperparameter Definition
Width Number of nodes in a given layer
Depth Number of hidden layers
Batch size Size of input data “packages”
Activation function Modifies the outputs of a layer
Loss function Quantifies prediction error
Optimizer Minimizes the loss function during training
Learning rate Fraction of the parameters’ updates applied after each batch
Number of Epochs Number of learning cycles
Input

layer

o154

Hidden layers



Learning rate
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If ais too small:

* might take a very
long time
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Hyperparameters tuning: network structure

* The lightest configuration (2

layers — 4 nodes, 37 learnable 800 - 2 layers - 4 nodes

e taeenchs 700 T 2o e
(L}_I) 1 4 layers - 4 nodes
S 600 | — 4 layers - 16 nodes |

* The heaviest configuration (8
layers — 16 nodes) converges N _
quickly but at the expense of the 8 400-

—

number of learnable parameters 1
(1969) 3001

8 layers - 4 nodes
—— 8 layers - 16 nodes

* The middle-ground configuration

(4 layers — 16 nodes) is a good 100__ - Se
balance between converging 1 E————
speed (27 epochs) and 1 5 10 15 20 25 30 35 40
complexity (881 learnable EpOC hs

parameters)



Hyperparameters tuning: batch size

* Batch size follows a non-linear
direct relation with convergence 800
speed (in epochs)

batch size = 4
batch size = 8

Behavior not reflected in total

tational ti L batch size = 16 |
computational time: S 600 batch size = 32
n
. & 400-
* Large batch size values 3

compromise generalizing ability 300__
of the network

200-
* The middle-ground value of 16 1001
keeps computational times at ‘ ===
. O T — 1 1 1
reasonable values while 35 40

preventing loss of generalizability




Hyperparameters tuning: optimizer

* The fastest convergence is shown
by SGD (16 epochs), which
presents instabilities in the loss
values with a visible bump at
L
epoch 12 N

=

]
* The second-best optimizer in N

terms of convergence speed (27 8
epochs) is Adam, which converges —
in a stable manner

e Other optimizers tested
(Adadelta, Adagrad, Ftrl and
Adafactor, not shown here) did
not converge
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Hyperparameters tuning: learning rate

* Learning rate values of 101 and
102 show fast convergence (13
epochs) but unstable loss curves,
with the 102 value showing a
bump at epoch 12

—— learning rate = 10

| — learning rate = 10 |

—— learning rate = 10
learning rate = 10"

* The learning rate value of 10
doesn’t reach convergence in the
40 epochs limit

* The best choice is therefore the
value 103, which reaches
convergence at epoch 27




Final configuration of the network

* Layer density = 16 800 -
* Layer number =4 7001
e Optimization parameter (Loss) = .
Mean Squared Error (MSE) 600

* Optimizer = Adam 500 -
* Batchsize =16 n 1
3 400+

* Learningrate = 10 S _

* Activation function 300+

‘ReLV’ for the 4 hidden layers 2004

‘Linear’ for the output layer
100 -

Sand-predicting model loss on training dataset
—— Sand-predicting model loss on testing dataset
—— Clay-predicting model loss on training dataset

—— Clay-predicting model loss on testing dataset

sand content predictions CV(RMSE) ~ 0.28
clay content predictions CV(RMSE) ~ 0.25




Advantages of Machine Learning

Predicted clay [%]
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Comparing soil texture maps
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e Soil texture prediction maps show the same . ST
macrostructures present in the RER clay and sand [ o W ‘ "
maps.

* Main differences are two high clay and low sand
content narrow-shaped features not shown by
RER maps.
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Hydrographic history of the area
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The area was crossed
until the Ill century
BCE by the Eridano,
Idice and Valreno
channels branching
off from the Po river.

Subsequent
hydrographic changes
to the landscape led
to the abandonment
of the area by those
river channels



Sedimentary filling
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The abandonment of the Eridano, Proto-
Idice and Proto-Valreno channels led to the
sedimentary filling of their riverbeds.

During sedimentary filling, coarser grained
particles like sand are deposited first,
gradually followed by finer grained particles
like clay.

Time

B Clay

Pre-abandonment [ Sand

=

* The narrow-shaped features present in the soil texture
prediction maps retrace the abandoned riverbeds of
Proto-ldice and Proto-Valreno.



Advantages of AGRS measurements
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Take home messages

Loss

Hyperparameter optimization is
key in Deep Learning to ensure
fast convergence and high-
quality results

1

| prevented both underfitting
and overfitting

800+

Sand-predicting model loss on training dataset

—— Sand-predicting model loss on testing dataset

700+
600+
500+

—— Clay-predicting model loss on training dataset

—— Clay-predicting model loss on testing dataset
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Soil texture and radioelements
abundances are non-linearly
correlated, and are therefore

Observed clay [%] Observed sand [%]

best studied with Deep
Learning
LR " LR
R2=0.46 ~ R?=0.45
CNLML - NLML "
R = 0.53 R2=0.52

Gamma rays can unveil data
about soil texture and reveal
ancient traces left by the
hydrographic history of the soil
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Thesis summary

* The electromagnetic spectrum can be fully exploited to obtain valuable =~ — ~ Adeep neural

Radiation Physics and
hemisti

network for
predicting soil texture

agricultural data related to:

000

. o \"'o
* soil properties @
e plant health status
e water levels

Sensing technologies can accurately measure agricultural indicators,
providing farmers and organization with the necessary knowledge to
increase production quality and yield while reducing resource wastes

Remote sensing plays a major role in increasing survey efficiency in terms
of time, costs and data quality

* Artificial Intelligence can enhance the study of complex systems and will

be a powerful tool for smart agriculture going forward

Automotive SAR Imaging for
Urban Mapping: Potentials
and Ch:

using airborne
radiometric data

3 Airborne Radiometric

Surveys and Machine
Learning Algorithms for
Revealing Soil Texture

Y Moving forward the

automatic detection
of Flavescence Dorée

w4 invineyards with
Akl airborne imaging

Combining Precision
Viticulture Technologies

= and Economic Indices

to Sustainable Water
Use Management



My publications

Thank you!
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