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Scientific motivation

• World’s population is expected to grow to 9.1 Billion people by 2050,
with a 70% increase in food demands across the world (FAO, 2014)

• Unlike demands, land and water resources are limited

• 70% of global freshwater is already used by agriculture

• Resource efficiency must increase:

• Better land use for high yield productions

• Reduced water wastes

• Reduced use of fertilizers and pesticides

• Disease monitoring and prevention 
strategies

• Smart agriculture through quantitative and measured data

• Highly accurate sensing technologies

Icons by Vecteezy: www.vecteezy.com/free-vector/agriculture-icon
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Radioelements and soil texture

• Small soil particles (mostly those smaller
than 1 µm) can act as colloids and adsorb
cations.

• The sum of the exchangeable cations in the
soil is called the Cation Exchange Capacity
(CEC).

• Clay and silt soil fractions have high specific
surface and high CEC so they can adsorb
cations and specifically positively ionized
natural radioelements (K+, U4+, U6+, Th4+).

Silt
0.002 – 0.05 mm

Sand
0.05 – 0.2 mm

Clay
< 0.002 mm

Natural radioelements concentration in the
soil is correlated to soil texture.



• 3 surveys over the Mezzano Lowland, Ferrara (⁓ 189
km2) for a total of 4 hours and 45 minutes.

• Mean flight height of 104 ± 21 m

• Mean velocity of 102 ± 13 km/h

• Field of view (FOV) of radius 300 m

• Measurements every 300 m.

• Gamma spectra acquired with a time resolution of 10 s
for a total of 1469 spectra.

Data taking surveys

• Accurate soil texture mapping is key in
precision agriculture for planning cultivations
and targeting interventions.

• For large areas, direct measurement methods
are wasteful in terms of time and money.

• Airborne Gamma Ray Spectroscopy (AGRS)
overcomes these issues allowing for a fast and
efficient mapping of large areas.

Emilia-Romagna



Instrumentation and analysis

• 16 L NaI(Tl) crystals surrounded by 1 mm thick
stainless steel housings (4 modules).

• 6.8 % energy resolution at 662 keV (137Cs).

• Minimum Detectable activity Concentration (MDC)
and Abundance (MDA):

• Full spectrum analysis with 40K, 238U and 232Th
simulated fundamental spectra (assuming secular
equilibrium conditions).

MDC

40K 16 Bq/kg

238U 4.94 Bq/kg

232Th 3.25 Bq/kg

MDA

0.05 · 10-2 g/g K

0.4 μg/g U

0.8 μg/g Th



500 m x 500 m
resolution clay and
sand soil content
maps

Model inputs and data manipulation

0.30 0.91 1.24

273 punctual soil
texture measurements
from Regione Emilia-
Romagna (RER)

1469 geolocalized K
and Th abundance
data points obtained
via airborne surveys

500 m x 500 m
resolution K and Th
abundance maps
with matching grid

723 square meshes 723 square meshes

Kriging spatial
interpolation

Kriging spatial
interpolation



Non-Linear Machine Learning (NLML)Linear Regression (LR)

Correlation between texture and gamma

Previous studies:

My study:

Previous studies:

My study:

Van Der Klooster, E. et al. [0.1111/j.1365-2389.2011.01381.x]

Mahmood, H. S. et al.[10.3390/s131216263] 

Spadoni, M. and Voltaggio, M. [0.1016/j.gexplo.2012.10.016]

Elbaalawy, A. M. et al. [10.5958/2395-146X.2016.00038.7]

Petersen, H. et al. [10.1002/jpln.201100408]

r = 0.64 r = -0.62

http://dx.doi.org/10.1111/j.1365-2389.2011.01381.x
http://dx.doi.org/10.3390/s131216263
http://dx.doi.org/10.1016/j.gexplo.2012.10.016
http://dx.doi.org/10.5958/2395-146X.2016.00038.7
http://dx.doi.org/10.1002/jpln.201100408
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Unpacking the Machine Learning algorithm

• The result is passed through an activation
function to the next layer.

• A bias is added.

• The weighted values are summed.

• Each received input is multiplied by a weight.

• Data flows from left to right in the algorithm’s
architecture.

• In a Deep Neural Network, each node in a layer i
receives data from each node of the previous
layer j.

• Each node performs the following operations:
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Learning epoch by epoch

• The data is fed to the algorithm multiple times, called
epochs.

• Between each epoch, the algorithm changes its
learned parameters (weights and biases) to better
model the input data.

• After each epoch, performances are evaluated in
terms of accuracy (quality of the predictions 𝑦1,…,𝑛

′ )

and/or loss (difference from the ground-truth 𝑦1,…,𝑛).

Epoch 1 Epoch 2 Epoch 3

…
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Epoch
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Preparing the dataset for analysis

Training dataset: 578 data used for training
the algorithm

Validation dataset: 72 data used for a live
performance check during training

Test dataset: 73 data used for testing the
algorithm’s final performances

Subdivision made roughly preserving 
spatial distribution of data.

Training
Validation
Test

80%

10%

10%



ID K Th Clay Sand

1 0.9 6.7 24 47

2 1.2 5.8 35 25

3 1.3 7.1 23 36

4 0.7 6.5 12 34

5 0.5 6.6 27 73

6 1.1 8.2 31 64

7 0.8 5.9 16 53

Hyperparameter Definition
Width Number of nodes in a given layer
Depth Number of hidden layers

Batch size Size of input data “packages”
Activation function Modifies the outputs of a layer

Loss function Quantifies prediction error
Optimizer Minimizes the loss function during training

Learning rate Fraction of the parameters’ updates applied after each batch
Number of Epochs Number of learning cycles
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Epochs43210

Width Number of nodes in a given layer
Depth Number of hidden layers

Batch size Size of input data “packages”
Activation function Modifies the outputs of a layer

Loss function Quantifies prediction error
Optimizer Minimizes the loss function during training

Learning rate Fraction of the parameters’ updates applied after each batch
Number of Epochs Number of learning cycles

Hyperparameters explained
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If α is too small: 
• might take a very 

long time
• might end up stuck 

in a local minimum

If α is too big: 
• might have trouble 

converging
• might skip global 

minimum

If α is just right:
• willl converge 

quickly
• will evade local 

minima

Learning rate



= 
M

SE

• The lightest configuration (2 
layers – 4 nodes, 37 learnable 
parameters) doesn’t reach 
convergence within 40 epochs

• The heaviest configuration (8 
layers – 16 nodes) converges 
quickly but at the expense of the 
number of learnable parameters 
(1969)

• The middle-ground configuration 
(4 layers – 16 nodes) is a good 
balance between converging 
speed (27 epochs) and
complexity (881 learnable 
parameters)

Hyperparameters tuning: network structure
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M

SE

• Batch size follows a non-linear 
direct relation with convergence 
speed (in epochs)

Behavior not reflected in total 
computational time:

t(bs = 4) [s] > 2x t(bs = 64) [s]

• Large batch size values 
compromise generalizing ability 
of the network

• The middle-ground value of 16 
keeps computational times at 
reasonable values while 
preventing loss of generalizability

Hyperparameters tuning: batch size
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SE

• The fastest convergence is shown 
by SGD (16 epochs), which 
presents instabilities in the loss 
values with a visible bump at 
epoch 12

• The second-best optimizer in 
terms of convergence speed (27 
epochs) is Adam, which converges 
in a stable manner 

• Other optimizers tested 
(Adadelta, Adagrad, Ftrl and 
Adafactor, not shown here) did 
not converge

Hyperparameters tuning: optimizer
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M

SE

• Learning rate values of 10-1 and 
10-2 show fast convergence (13 
epochs) but unstable loss curves, 
with the 10-2 value showing a 
bump at epoch 12

• The learning rate value of 10-4

doesn’t reach convergence in the 
40 epochs limit

• The best choice is therefore the 
value 10-3, which reaches 
convergence at epoch 27

Hyperparameters tuning: learning rate



Final configuration of the network

• Layer density = 16

• Layer number = 4

• Optimization parameter (Loss) = 
Mean Squared Error (MSE)

• Optimizer = Adam

• Batch size = 16

• Learning rate = 10-3

• Activation function

• ‘ReLU’ for the 4 hidden layers

• ‘Linear’ for the output layer

sand content predictions CV(RMSE) ~ 0.28
clay content predictions CV(RMSE) ~ 0.25



Advantages of Machine Learning

Non-Linear Machine Learning (NLML)Linear Regression (LR)

R2 = 0.46 R2 = 0.45 R2 = 0.53 R2 = 0.52

• Bound to a linear relation • Free of any relation type
restriction

• Better R2 scores on
predictions

• Worse R2 scores on
predictions

Predictions more
closely follow data in
the textural triangle

Predictions are unable
to reproduce the
complexity of data in
the textural triangle

RER soil texture 
map data

LR predictions

RER soil texture 
map data

NLML predictions



• Soil texture prediction maps show the same
macrostructures present in the RER clay and sand
maps.
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Δ = ClaySLR - ClayRER

• Main differences are two high clay and low sand
content narrow-shaped features not shown by
RER maps.

Δ = ClayNLML - ClayRER

Comparing soil texture maps



• The area was crossed 
until the III century 
BCE by the Eridano,
Idice and Valreno
channels branching 
off from the Po river.

• Subsequent 
hydrographic changes 
to the landscape led 
to the abandonment
of the area by those 
river channels

Hydrographic history of the area



Sand 
Clay 

• During sedimentary filling, coarser grained
particles like sand are deposited first,
gradually, gradually followed by finer grained
particles like clay.

• The abandonment of the Eridano, Proto-
Idice and Proto-Valreno channels led to the
sedimentary filling of their riverbeds.

• The narrow-shaped features present in the soil texture
prediction maps retrace the abandoned riverbeds of
Proto-Idice and Proto-Valreno.

gradually followed by finer grained particles
like clay.

Sedimentary filling



• AGRS cover is much 
more homogeneous.

• 1469 gamma spectra 
were acquired, more 
than 5x the amount of 
RER measurements.

• Direct RER 
measurements are 
taken unevenly in the 
surveyed area.

• A total of 273
measurements were 
taken by RER.

Advantages of AGRS measurements



Hyperparameter optimization is
key in Deep Learning to ensure
fast convergence and high-
quality results

I prevented both underfitting
and overfitting LR

NLML NLML

R2 = 0.46

LR

R2 = 0.45

R2 = 0.53 R2 = 0.52

Soil texture and radioelements
abundances are non-linearly
correlated, and are therefore
best studied with Deep
Learning

Gamma rays can unveil data
about soil texture and reveal
ancient traces left by the
hydrographic history of the soil

Take home messages
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Thesis summary

• The electromagnetic spectrum can be fully exploited to obtain valuable
agricultural data related to:

• soil properties

• plant health status

• water levels

• Sensing technologies can accurately measure agricultural indicators,
providing farmers and organization with the necessary knowledge to
increase production quality and yield while reducing resource wastes

• Remote sensing plays a major role in increasing survey efficiency in terms
of time, costs and data quality

• Artificial Intelligence can enhance the study of complex systems and will
be a powerful tool for smart agriculture going forward
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Thank you!

My publications
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