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Abstract: In the sudden perturbation approximation, the probability of muon sticking to helium, w:, 

is found to equal 0.848 x 10-l in the reaction dtp + ya + n. In calculations we have used accurate 

wave functions of the mesic molecule dtp obtained in the adiabatic representation of the three-body 

problem. Corrections to the sudden approximation do not exceed 3%. In view of a subsequent 

shaking-off of muons during deceleration of pa, the resulting sticking probability os equals 

0.58 x IO-‘. 

1. Introduction 

Beginning from 1977 the phenomenon of muon catalysis of nuclear fusion in 

deuterium-tritium mixture has been intensively investigated in many laboratories 

of the world, both theoretically and experimentally [for reviews, see’refs. ‘-“)I. The 

bottleneck of the chain of muon-catalyzed fusion, 

+(Q= 17.6 MeV), (11 

653 



654 L. N. Bogdanova et al. / Muon sticking 

is the loss of muons in the (PLY + n) channel where the muon sticks to the a-particle. 
The problem of muon sticking was first discussed by Zeldovich ‘) and Jackson 6, 
in 1957. A more careful analysis was performed a few years ago ‘-*), still in the 
framework of the Born-Oppenheimer approximation and for the case of an infinite 
rate of nuclear fusion, the latter having been treated in a sudden approximation 
(BO+ S method). The estimated accuracy of these calculations was about lo%*. 

In a recent paper lo), the muon wave function of the dty mesic molecule is 
calculated with the Monte Carlo method without approximations characteristic for 
the BO method. The values of the sticking coefficients obtained are lower by 25% 
than those previously calculated in the BO + S method. 

Only recently has some reliable experimental information on muon sticking in 
the reactions ddp + p-31-Ie + n [ref. ‘I)] and dtp + p-41-le + n [ref. “)I become avail- 
able. The experimental values of muon sticking probabilities appeared somewhat 
smaller than the theoretical estimates within the BO + S method. In the ddp case 
the experimental accuracy achieved is at the level of a few percent, and it is expected 
that, in the near future, experimental data of comparable or better accuracy will be 
available for muon sticking following other nuclear reactions (pd, dt, etc.). 

In the present situation it seems reasonable and timely to perform an analysis of 
the approximations used in the BO+ S method and to develop a regular method 
for a more accurate calculation of muon sticking probabilities in various reactions. 
These are the aims of the present paper. 

The BO + S method involves some approximations, each of them having a corre- 
sponding smallness parameter such as the ratio of muon to nucleon mass, ??r,/ mN, 
the ratio of the characteristic range of nuclear interaction to the muon Bohr radius, 
&/aP, etc. 

We show in sect. 2 that corrections due to the finite nucleus mass are most 
important, and, hence, a muon wave function more precise than the BO one is needed. 

In sect. 3 a calculation of the muon sticking probability based on the exact muon 
wave function is presented. The corrections to the sudden approximation are 
evaluated in sects. 4 and 5. Our results are summarized and discussed in sect. 6. 

Only the case of dt fusion is considered here, mainly due to the intense interest 
in this specific problem. The method developed, however, holds for nuclear reactions 
involving other hydrogen isotopes 13)_ The comparison between theoretical and 
experimental determination of the sticking probability in all these cases (dd, pd, 
pt, etc.) is equally important for the solving of the sticking problem in the dt reaction 
and allows one to gain information which is, in a sense, complementary to that 
provided by studying the dt reaction. 

* A recent ~iculation9) within the BO method is irrelevant, since as the initial-state muon wave 
function that of the dt ,cr mesic mote&e at the equilib~um internuclear distance R = R, was used, 

instead of the R + 0 limit, as is necessary. 
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2. Analysis of the BO + S method approximations 

655 

The sticking probability os which is actually measured (effective sticking probabil- 

ity) can be expressed as 

%=wos(l-Y), (2) 

where wg is the probability that the muon is bound to the n-particle just after fusion 

and y is a shaking-off, or reactivation, coefficient, i.e. the probability that during 

the slowing-down of the pa atom produced the muon is shaken off as a result of 

stripping reactions during collisions with target nuclei. The BO + S method for the 

calculation of W: relies on the following main assumptions: 

(a) The muon follows adiabatically the motion of the two nuclei until fusion 

occurs. 

(b) Fusion is an extremely sudden process, i.e. its time-scale is very short in 

comparison with any other time relevant to the process. 

(c) Any effect associated with finite nuclear size and finite radius of nuclear forces 

is neglected: dt fusion occurs when the two nuclei are at zero separation, the muon 

moving in the Coulomb field of a point-like nucleus with the charge and mass of 

the compound. 

For the case of the dt system this means that the initial muon wave function 

?Pi”( r) just before fusion is the wave function of p-‘He in the Is state with a point-like 

nucleus, 

qE”(r) = p,,(r). (3) 

The amplitude of a muon sticking to the a-particle in the (pa) nl state, Fnl, is 

simply expressed as the overlap between Pi” and the wave function ‘Pf of the PQ 

mesic atom in the nl state, moving with velocity V, the value of which is defined 

by the energy release Q = 17.6 MeV in reaction (l)*: 

Pf= eimpv”!Pn,(r) , 4 = m,V, (4) 

F,, = d3r Y’:,(r) ePiq” Pi”(r) . (5) 

In refs. 7,8 ) partial w,! and total w”, sticking probabilities were calculated with the 

formulae 

W,I = IEr12, 4 = c %i, (6) 

and the function ‘lyi,( r) = Pk”( r) was used. 

Concerning the three main approximations, clearly (a) is exact in the limit that 

the relative motion of the two nuclei is extremely slow in comparison with the 

muon’s. The relevant smallness parameter equals the ratio of the muon mass mw to 

l In ref. 8, the final-state wave function was taken as P,= e’mY-r V”,(r),where m=m,m,(m,+m,)-’ 
is the reduced mass of the (pa’) atom. It is shown in sect. 5 that a straightforward consideration 
leads to formula (5). 
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the reduced mass of the two nuclei mN, 

K=m,/m,. (7) 

For the dt system one has K = 0.09, whereas for the dd and pd systems K = 0.11 and 

0.15, respectively. The relevant parameter K’ can also be defined as the ratio of the 

velocity of the nuclei V, to the muon velocity VP = ac, 

K” v,/v,. (8) 

Near the equilibrium position of the nuclei, V, can be estimated from the relation 

between the vibrational energy of the nuclei and the muon energy, 

Ei, z mNV~=(mp/mN)‘/2mpV~, (9) 

from which 

G=(m,/m,)3’4. (10) 

In this case one obtains Zdt = 0.15, &id = 0.19, ZPd = 0.26. These and similar estimates 

enable one to evaluate the expected contribution from the corrections to the BO 

approximation at the lo-20% level. 

Approximation (b) is based on the fact that the lifetime rN = 1O-2o s of the 

compound nucleus 5He*, which can be accepted as a timescale, is small compared 

to the characteristic time of muon motion in a mesic atom (r,, = lo-i9 s). The 

corresponding parameter is 

?7=+/7,,=0.1. (11) 

The effects due to the finite size of the nuclei depend on the parameter 

[= RN/a,=0.03, (12) 

where RN and a, are the characteristic nuclear scale and muon orbit radius. The 

BO + S method corresponds to the case K = 77 = 5 = 0. We now calculate the correc- 

tions to the BO + S method due to the finite values of these parameters. 

3. The calculation of the muon sticking probability o”, 

We calculate the muon sticking probability w”, without the Born-Oppenheimer 

approximation, but using an exact dtF mesic molecule wave function. We will 

remain in the framework of the sudden approximation and neglect the dimensions 

of the nuclei and the range of nuclear forces in comparison with the mesic molecular 

dimension. 

In the sudden approximation the sticking probabilities are still defined with 

formulae (5) and (6), where, however, the muon initial wave function Vi”(r) at the 

moment of fusion is expressed via the dtp mesic molecule wave function ?PJ”(r, R) 

in a rotational-vibrational state (Jv) in the following way: 

?Pi”( r) = lim 
?P’“(r, R) 

Reo { 1 d3rl !P’“(r, R)lz}‘12 ’ 
(13) 
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R being the distance between d and t in the dt p mesic molecule. The wave functions 

VJ”( r, R) have been calculated in refs. 14,15) with algorithms r6*17) for the numerical 

solution of the Coulomb three-body problem in the adiabatic representation “). 

The R --, 0 asymptotic of the mesic molecule wave functions has been found in 

ref. 19). For J-states it is 

F’“(r, R) R:. AJoRJ f a$ ~No(r) + J 
m 

(14) 
N=l 0 

i.e. in this limit the variables r and R which describe the motion of the muon and 

the nuclei are factorized. Here, (bNO(r) and &Jr) are discrete and continuous 

spectra wave functions of the mesic atom in the 1= 0 state with nucleus charge 2 = 2 

and mass of the t p mesic atom 18) (namely, these functions being involved in the 

adiabatic representation of the dtp mesic molecule wave function). Coefficients AJ”, 

a: and ap are known from the numerical solution of the Coulomb three-body 

problem r8,r9) and are normalized according to 

From (13)-(15) it follows that the normalized muon initial-state function has the 

form* 

‘Pi”(r)= ?P$‘(r)=C a$@,,(r)+ dka$“&,(r). c 
N J 

The muon wave functions at the moment of fusion, i.e. the coefficients a$ and 

a?, depend, though weakly, on the mesic molecular state (Jv) (see table 1). The 

probabilities PJ, of the nuclear reaction from the various rotational-vibrational 

states (Jv) are known from cascade calculations ‘I): 

(JU) = (01) 

(JV) = (00) (17) 
JfO. 

The probability of fusion from rotational states with f f 0 being negligibly small**, 

the muon sticking should be considered for J=O states only. 

Sticking coefficients ~2 are calculated with a formula analogous to (6), 

(18) 
Taking into account the nuclear dt interaction [see ref. “)I essentially influences the coefficient AJ” 
only; coefficients aN are practically unchanged and coefficients aL are changed noticeably for momenta 

ka RN* F 1 only (RN being the range of the nuclear dt interaction). 

The mesic molecule dtp is formed in state (Jv) = (11) [ref. 22)], but for all states with / f 0 its 

de-excitation rates significantly exceed the rates of nuclear fusion *‘). 
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TABLE 1 

Form factors F,(ls) and Fk( 1s) and coefficients aN and uk of decompositions 

(16) “1 

Ev(l4 (a,) +&la,F, 
N 

(x10-‘) 
(/=O, 0’1) (/=o=O) (J=u=O) 

1 0.9312 0.9831 0.9827 1 
2 0.3514 -0.0733 -0.0747 -0.0287 
3 0.1936 -0.0293 -0.0297 -0.0063 
4 0.1263 -0.0173 -0.0175 -0.0024 
5 0.0905 -0.0124 -0.0126 -0.0012 

k Fk(lS) a~&la,F, 
(x10-l) (Xl%) (x10-‘) 

0.2 0.2273 -0.2702 -0.2740 -0.0623 
0.4 0.3223 -0.3610 -0.3659 -0.1179 
0.6 0.3964 -0.4039 -0.4090 -0.1621 
0.8 0.4605 -0.4140 -0.4190 -0.1929 
1.0 0.5188 -0.4017 -0.4061 -0.2106 
1.2 0.5737 -0.3755 -0.3793 -0.2176 
1.4 0.6265 -0.3420 -0.3451 -0.2162 
1.6 0.6784 -0.3060 -0.3086 -0.2094 
1.8 0.7301 -0.2705 -0.2726 -0.1990 
2.0 0.7822 -0.2372 -0.2389 -0.1869 
2.5 0.9174 -0.1680 -0.1690 -0.1550 
3.0 1.0636 -0.1187 -0.1193 -0.1268 
3.5 1.2215 -0.0847 -0.0851 -0.1040 
4.0 1.3831 -0.0615 -0.0618 -0.0854 

5.0 1.5997 -0.0343 -0.0344 -0.0550 
6.0 1.3295 -0.0205 -0.0205 -0.0273 
7.0 0.7081 -0.0130 -0.0130 -0.0092 

8.0 0.3143 -0.0087 -0.0087 -0.0028 
9.0 0.1461 -0.0060 -0.0060 -0.0008 
10 0.0748 -0.0043 -0.0043 -0.0003 

“) The values are calculated at V= 5.843, q = (mw /m) V= 6.063, m/m,, = 
0.963748, in units e = A = m = 1. 

where, according to (5) and (16), 

F$=C u~FN(~l)+ mdkaf’Fk(nl), 
N J 0 

F,(d) = 
J 

d3r qf( r) c-iq’r &,Q,( r) , 

Fk(nl) = J d3r W:,(r) e-‘q”@kO(r), (19) 
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Here q = m,V; V = 5.843 is the velocity of the PLY mesic atom calculated within a 
relativistic kinematics for the process dt p + P(Y + n. [A more accurate definition lo) 
of V is relevant, because the value os is extremely sensitive to V.] 

Coefficients a$ and a? for the states f=O are presented in table 1 and shown 
in fig. lb. 

Here and below, unless otherwise stated, the following units are used: e = 21= m = 
1, and m = m,m,/(m, + mJ, where m, = 105.66 MeV, m, = 2808.94 MeV are the 
muon and tritium masses, respectively. Form factors FN( 1s) and F,(ls) calculated 
with formulae (19) are displayed in fig. la. They satisfy the closure relation 

I 
m ; I~N(W12+ dk]F,(ls)12=(l+(qa)*)-‘, (20) 

0 

where a= (m,+m,)/2m,m,. 
Although state N = 1 dominates in the normalization condition (15) of the mesic 

molecule wave function (]a,/*=0.97), its contribution to (20) is about 10% only. 
Hence, despite the smallness of ffN and ffk, their inclusion essentially decreases the 
value of&j0 calculated in the BO approximation due to the destructive interference 

q19 I I F,(IS) 

YN 0 k 

’ ‘4 Y3 2 4 6 0 

Fig. 1. Form factors F&Is) and F,(ls) (a) calculated with formula (19), coefficients aN and ak (bf of 
the mesic molecule dtw wave function fvoO(r, R) decomposition (14). 
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with the N = 1 term. Thus the probability wlS decreases from wz” = 0.903 x 10m2 for 
the wave function cpi,( r) of the p-‘He atom to w ,S = 0.867 x 1O-2 for the p-3He atom 
wave function 4,,(r). Including discrete spectrum states N > 1 in decomposition 
(16) decreases wlS to 0.770 x 10W2 and, finally, taking the continuum into account 
diminishes it to wlS = 0.653 x lo-‘. About 23% of muons are captured in excited nl 
states. 

The probability of a muon sticking to excited states nl with n 2 5 was calculated 
with the following formula 13): 

n-1 

@s(n) = c ws(nl) = (4CInY 
EC1 -5/n)2+(q421”-3 

I=0 ~(1+u~)2+bP)21n+3 

x ~~~-c~~~-c2/~2~+~~+5~~~~~212+ 
{ 

45* 

I 3(1- l/n2)(qa)2 ’ 
(21) 

where 

l= 
m,(m, + m5ne) 

msne(mp -t m,) . 

The resulting initial sticking probability 

0”s = C r, ~~“~~ = 0.848 x 1O-2 
Ju nl 

Sticking probabilities w$ (X 10mM2) for the reaction (dtp)JU + ( p-4He),, + n 
from the states (Jv) = (01) and (00) 

IS 0.6526 0.6502 0.689 0.9030 
2s 0.0937 0.0934 0.099 0.1287 
2P 0.0239 0.0238 0.024 0.0321 
3s 0.0285 0.0284 0.030 0.0391 
3P 0.0086 0.0086 0.009 0.0115 
3d 0.0003 0.0003 0.0003 
4s 0.0122 0.0121 0.013 0.0166 
4P 0.0038 0.0037 0.0051 

4d+4f 0.0003 0.0003 0.0003 

n--1 

c c 0.0242 0.0241 0.03 1 0.0278 
n=5 1=0 

total 0.848 0.845 0.895 * 0.004 1.164 

0: = 0.848 

“) Data from ref. I”). Values ot: and o$ are included in the sum 
over the higher states. 

“) The listed vaiues are calculated from formulae (5) and (6) with 
functions (3). The contribution from n 3 5 states was found with formula 
(21). 

(22) 
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is smaller by 27% than the value wg”= 1.164 x 10e2 calculated within the Born- 

Oppenheimer approximation*). The 02 calculated here reasonably coincide with 

the 0:: from ref. lo) obtained with the Monte Carlo method (they are listed in the 

third column of table 2). Such an agreement evidences the correctness and high 

accuracy of both methods. From table 2 one can also see that the 00,: practically 

do not depend on the vibrational state o of the dtp mesic molecule. 

4. Corrections to the sudden approximation 

In this section we perform a more de&iled (as compared to sect. 2) analysis of 

the sudden approximation. We continue to neglect nuclear finite-size effects (see 

sect. 5). However, we start from a more accurate definition for the sticking probability 

of muons to helium. 

Expressions (S), (6) and (18) for w”,;’ are simplified versions of the general 

definition 

~~=~~~~Jv~ (23) 

where A$ . IS a partial rate of the nuclear reaction 

(dt/.@ ” -(pa)P+n, (24) 

(~LcY)@ being the system produced in the discrete spectrum state p = (nl), and 

is the total rate of nuclear fusion (1) from mesic molecular states (Jo). 

We now estimate the unce~ainti~s appearing due to the transition from (23) to 

(18). The partial rate A: is defined, in first-order perturbation theory in terms of 

the fusion amplitude T, by the formula 

2 

A;= IT12pp d3r !P$(r) e-iqp”W’“(r, 0) , (26) 

(In what follows J = 0, and indices Jv are omitted.) Here pP is the momentum of 

the (P(Y)@ system in the c.m.s., 

(27) 

Q = 17.6 MeV is the energy release in reaction dt g + (Y + n+ p, gP is the energy of 

(~a)~, and 

* The difference between this value and those presented in refs. ‘**) is due to the contribution from the 
states nf with n z= 4. 
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From (23), (25) and (26) follows the standard expression (18) for the sticking 
probability w,~, provided the dependence of q and p on the final state /3 in formula 
(26) is neglected and the closure relation 

applied. 
In order to estimate the accuracy of this approximation we put pP = pot- 6pp, then 

@p(Pp) = @p(Po)+” SW@, A, = A,(Po)+SA,, h=A(p,)+SA, 

The main contribution to the total rate A comes from the final states p, where the 
muon is a spectator, i.e. at p = k, lk - qj S l/u,. The average energy carried away 
by muon is about gC- 10 keV, the total rate A being proportional to the phase-space 
volume of relative ncr motion, 

(30) 

Here momentum p is defined up to terms -a,/Q with the formula 

(31) 

In contrast to A, partial rates A, quickly vary with momentum pa. For instance, 
the partial rate for j3 = 1s is 

Let po=pts, then the relative errors of partial fusion rates are minimal and can 
be estimated with the formula 

The relative error in total rate, according to (30), is 

isi IP -ml 
-....“rT-z. 

qP%l 

A P 2%(% + “J 
==3x1o-3. 

(331 

(34) 

Thus, the uncertainties in og, caused by the neglected dependence of the mesic 
atom ( ~FLCY),~ momentum on the state nl in which it is produced, do not exceed 0.5%. 

We now return to the effects of the finite rate of nuclear fusion. In order to take 
them into account, the energy dependence of the nuclear reaction amplitude has to 
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be considered. By using a simple resonance model to describe the nuclear interaction 
in the coupled dt and nly channels, the T-matrix is given by 

Fig. 2. 

The description of the nuclear reaction (dtp)‘” -+ (pa),,+n results in a three- 
coupled-channels problem (p + d-!-t + p + (Y + n and p -t- ‘He*)*. The amplitude A42 
for this reaction can be represented by the graph shown in fig. 3. 

Fig. 3. The amplitude for the reaction (dt p)‘” + ( pa),,, + n in the three-coupled-channels problem. 

The diagram involves the propagator of the muon Go in the Coulomb field of a 
point-like nucleus with charge Z = 2 and mass md -t m,, which can be conveniently 
written by using the spectral representation 

(35) 

By neglecting effects connected with the finite fusion radius, the dtp mesic 
molecule wave function in the R+O limit is decomposed over the basis of the 
Coulomb functions involved in the spectral representation (35) of Go, 

i.e. over functions pPNO(r) and q&r) of discrete and continuous spectra of the p-‘He 
mesic atom. Note that coefficients b’,” and b? in decomposition (36) slightly differ 
from coefficients a$ and aJku in (16). From (35)-(36) we obtain (an integral over k 
is included in a sum over N) 

Mj$’ = ~~“(0) T(E,) C 6% d3r Y$( r) e-iq~“cp,,( r) , (37) 
N 

We are using here a simplified version of a model developed in refs. 2”*23) which fits all the experimental 

data on the dt reaction in the resonance ‘He*(=$+) region. 
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where 

T(E) = (a, n; k21 TI 4 t; k,) 

E,=E-&TN, (38) 

and N = 1 corresponds to the 1s state. 

Should the energy dependence of the T-matrix be neglected, expression (37) 

reduces to the result of the sudden approximation (5), (16), the only difference, 

however, being that functions pnr( r) of the FL-‘He mesic atoms are involved instead 

of p-3 He ones &Jr). It is the first term of decomposition (37) that corresponds to 

the Born-Oppenheimer approximation. 

Note that the energy dependence of the T-matrix influences only the non-adiabatic 

corrections to the muon wave function. In other words, corrections to the value W: 

calculated in the sudden approximation, are rather small, because they change only 

the contribution from non-adiabatic corrections to the BO approximation. 

From (38) it follows that 

All the non-adiabatic corrections SW: are linear in the real parts of coefficients & 

(see sect. 3); hence, corrections do: due to the energy dependence of T-matrix are 

Since 6w~/w~ = 0.23, corrections Awi to the sudden approximation value do not 

exceed 3%, i.e. they are essentially smaller than one would expect from the naive 

arguments of sect. 2. 

5. Other corrections 

In this section we consider corrections to w$ arising from the finite nuclear size 

and finite range of nuclear forces, as well as some other corrections, in particular, 

those due to the influence of the nuclear final- and initial-state interaction on the 

muon wave function. 

First of all, we take into account the fact that an a-particle is produced in the 

fusion reaction not exactly in the c.m.s. of nuclei (as has been assumed in formula 

(6)), but is somehow spread. To do this, we calculate amplitude M”r of the nuclear 

reaction (24), which corresponds to the diagram in fig. 3. Vertex form factors for 

‘He* + d + t and 5He* --, n+ Q: in the coordinate representation 

5,(R) = (dt/ V,\‘He*) , 

=&I,(R) = ha 1 V$He*l, (41) 
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are localized inside R d RN, RN = 4 fm being the characteristic size of the ‘He* 

resonance. For the sake of simplicity we write the amplitude M,,, for the 

mesic molecule wave function in the Born-Oppenheimer approximation 

?P’*(r, R) ,=, ~(R)cp,,(r) (it will be clear from the following that using the exact 

wave function does not influence the results): 

MJ,;=(E-E,+;iT)-’ 
I 

d3R d3R’d3rxJu(R)&(R) 

x @XP) e-iQ.sr S2(W~dr) . (42) 

Here R and R’ are the relative coordinates of nuclei in initial and final states, p is 

the muon coordinate with respect to the a-particle, W is the (F(Y) atom coordinate 

with respect to the neutron, and Q = (m, + m,) V is the E;LCX atom momentum in the 

c.m.s. Using relations (see fig. 4) 

p=mnR’/(m,+m,)+r, 

W=pm,/(m,+m,)-R’, 

we transform (42): 

A&, = B J d3 R’ &( R’) e’Q’n’ J d’r q!&(r) e-im*V’r 4pn,( r - x) , 
(43) 

m, x=-R’ 
m,+m, ’ 

B=(E-E,+3iT)P’ d3Rx(R)t,(R). (44) 

Expanding p&r--x) in the small parameter X, we obtain 

~~,=Bg(Q)(F,I+F’,:‘+F’,:‘+.‘.), (45) 

where g(Q) = j d3R’ &(R’) e’Q’R’. The leading term F,,[ in decomposition (45) 

coincides with the sticking amplitude defined with formula (5), and the corrections 

are 

Fig. 4. of the particles involved in reaction (1). 
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(47) 

Thus, the corrections to wni due to the finite range of nuclear fusion are rather small*: 

Consider now the corrections caused by strong interaction between nuclei in 
initial and final states on the muon wave function. This means that the nuclear 
reaction amplitude (24) should be calculated not to first order in the nuclear 
interaction amplitude (as was done when obtaining formula (26)), but exactly. The 
diagrams where the internuclear interaction is sandwiched by the Coulomb interac- 
tion of muon with nuclei should be taken into account. (Examples of such graphs 
are shown in fig. 5.) As was shown in refs. 20,23), such diagrams, taken into account 
when calculating the total rate A’” of nuclear reaction, lead to about 5% renormaliza- 
tion of the nuclear amplitude T in formula (26)**. The corrections to the sticking 
probability w,r are essentially smaller, since, according to (23), o,{ does not involve 
the nuclear reaction amplitude. They can be estimated as follows. First, neglect the 
structure ofthe 5He* resonance (i.e. consider it interacting with a muon as a point-like 
charge), then the sum of all diagrams of the type in fig. 5 will coincide with the 
diagram in fig. 3, the corresponding amplitude having been calculated in sect. 4. 

d 

d 

Fig. 5. Example of the diagrams for the reaction dt fi + r~rz + n with the internuclear interactions sand- 

wiched by the Coulomb interaction of muons with nuclei. 

* Using the exact wave function of the df fi mesic molecule instead of Y Bo( r, R) influnces only the 

non-adiabatic corrections from the faraway part of the continuum ks R;‘--60. This, however, is 
nonessential, because, according to sect. 3, the main contribution to these corrections comes from 

the smaller momenta k 6 q = 6, qR, = 10-l SP 1. 

** As is clear from the previous discussion and the form of the diagrams (fig. 5), the infiuence of the 

nuclear dt interaction on the muon wave function Y,,(r) is negligible. In this respect the statements 

of refs. 2’*28) about the importance of such influence seem strange. 
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To take into account the structure of ‘He*, one should include the ‘He* charge 

form factor dependence on the transferred momentum q. The characteristic value of 

q= Vm, is small compared to the inverse radius of ‘He: qRN= 10-l. Corrections 

to the sticking probability due to the influence of 5He* resonance structure on the 

muon wave function are defined by monopole and quadrupole formfactors and are 

about (qRN)‘= 10e2, i.e. &!Jw~G 1%. 

Of the same order of smallness should be the corrections due to the finite sizes 

of the nuclei, d, t and (Y. Finally, note the correction to w”,, due to vacuum polariza- 

tion 29) 

(48) 

6. Concluding remarks 

In the present paper the value w”, = 0.848 x lo-’ for the probability of muons 

sticking to helium in reaction (1) is obtained in the framework of the sudden 

approximation. The uncertainty of this calculation due to uncertainties in the 

numerical wave function used for the dt/* mesic molecule, !P’“( r, R), is noticeably 

smaller than the corrections to the sudden approximation, which are, according to 

our estimations, about 3%. 

Our result is in good agreement with ref. lo), where the sticking probability for 

the state (Jv) = (00) of the dtp mesic molecule has been calculated for the mesic 

molecule wave function obtained with the Monte Carlo method. As an argument 

for the correctness of the calculation, we indicate the coincidence between the 

sticking coefficient md = 0.12 [ref. “)I for the reaction ddp + p-3He+ n calculated 

with the same technique and the experimentally measured one wd = 0.126~tO.004 

[ref. “)I. 

The observed value ws = wg(l - y) is smaller than the calculated W: by ywi due 

to possible stripping processes during slowing down of the pa mesic atom in the 

medium: ionization from the 1s state of p.‘y [refs. ‘,‘)I, step-by-step ionization s,as.‘6), 

muons shaking off the excited states 24), etc. According to ref. 24) the resulting sticking 

coefficient is 

ws= w”, 
I 

0.96-0.03(p 
(P+2 

At medium density cp = 1, 

exp { -0.26 - 0.07~ ‘1 . (49) 

ws = 0.58 x 10-2. 

This value is almost twice less than the first estimates 5,6) within the Born-Oppen- 

heimer approximation, but still approximately twice greater than the recent experi- 

mental values reported by the Idaho-Los Alamos group 12) at cp = 1. The reason for 

such a drastic discrepancy between theory and experiment is still to be understood. 
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We emphasize, however, that present uncertainties in ws are due to the 

insufficiently well known reactivation coefficient -y, while the initial sticking probabil- 

ity CO: is now established quite reliably. 

The authors are grateful to V.P. Dzhelepov, J. Jackson, Yu.V. Petrov and A.A. 

Vorobyov for fruitful discussions. 
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